
Ada Style Guide

en.wikibooks.org

April 29, 2023

On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia
projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. A
URI to this license is given in the list of figures on page 367. If this document is a derived work
from the contents of one of these projects and the content was still licensed by the project under
this license at the time of derivation this document has to be licensed under the same, a similar or a
compatible license, as stated in section 4b of the license. The list of contributors is included in chapter
Contributors on page 365. The licenses GPL, LGPL and GFDL are included in chapter Licenses on
page 371, since this book and/or parts of it may or may not be licensed under one or more of these
licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of
figures on page 367. This PDF was generated by the LATEX typesetting software. The LATEX source
code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from
the PDF file, you can use the pdfdetach tool including in the poppler suite, or the http://www.
pdflabs.com/tools/pdftk-the-pdf-toolkit/ utility. Some PDF viewers may also let you save
the attachment to a file. After extracting it from the PDF file you have to rename it to source.7z.
To uncompress the resulting archive we recommend the use of http://www.7-zip.org/. The LATEX
source itself was generated by a program written by Dirk Hünniger, which is freely available under
an open source license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf.

http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.7-zip.org/
http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf

Contents

1 Ada Style Guide/Print version 3
1.1 Preface . 4

2 Introduction 7
2.1 Introduction . 7
2.2 Organization of this Book . 8
2.3 How To Use This Book . 10
2.4 Typographic Conventions . 14

3 Source Code Presentation 15
3.1 Introduction . 15
3.2 Code Formatting . 15
3.3 Summary . 30

4 Readability 33
4.1 Introduction . 33
4.2 Spelling . 33
4.3 Naming Conventions . 37
4.4 Comments . 48
4.5 Using Types . 63
4.6 Summary . 66

5 Program Structure 69
5.1 Introduction . 69
5.2 High-Level Structure . 69
5.3 Visibility . 80
5.4 Exceptions . 86
5.5 Summary . 89

6 Programming Practices 93
6.1 Introduction . 93
6.2 Optional Parts of the Syntax . 93
6.3 Parameter Lists . 97
6.4 Types . 101
6.5 Data Structures . 107
6.6 Expressions . 119
6.7 Statements . 125
6.8 Visibility . 138
6.9 Using exceptions . 144
6.10 Erroneous execution and bounded errors . 149
6.11 Summary . 158

III

Contents

7 Concurrency 165
7.1 Introduction . 165
7.2 Concurrency Options . 165
7.3 Communication . 179
7.4 Termination . 191
7.5 Summary . 197

8 Portability 201
8.1 Introduction . 201
8.2 Fundamentals . 202
8.3 Numeric Types and Expressions . 212
8.4 Tasking . 220
8.5 Exceptions . 223
8.6 Representation Clauses And Implementation-Dependent Features 224
8.7 Input/Output . 231
8.8 Summary . 233

9 Reusability 239
9.1 Introduction . 239
9.2 Understanding and Clarity . 240
9.3 Robustness . 243
9.4 Adaptability . 251
9.5 Independence . 269
9.6 Summary . 277

10 Object-Oriented Features 281
10.1 Introduction . 281
10.2 Object-Oriented Design . 282
10.3 Tagged Type Hierarchies . 282
10.4 Tagged Type Operations . 292
10.5 Managing Visibility . 302
10.6 Multiple Inheritance . 303
10.7 Summary . 308

11 Improving Performance 311
11.1 Introduction . 311
11.2 Performance Issues . 311
11.3 Performance Measurement . 312
11.4 Program Structure . 312
11.5 Data Structures . 313
11.6 Algorithms . 315
11.7 Types . 320
11.8 Pragmas . 325
11.9 Summary . 327

12 Portable Dining Philosophers Example 331

13 References 347

IV

Contents

14 Bibliography 351

15 GNU Free Documentation License 355
15.1 0. PREAMBLE . 355
15.2 1. APPLICABILITY AND DEFINITIONS 355
15.3 2. VERBATIM COPYING . 357
15.4 3. COPYING IN QUANTITY . 357
15.5 4. MODIFICATIONS . 358
15.6 5. COMBINING DOCUMENTS . 359
15.7 6. COLLECTIONS OF DOCUMENTS . 360
15.8 7. AGGREGATION WITH INDEPENDENT WORKS 360
15.9 8. TRANSLATION . 360
15.109. TERMINATION . 361
15.1110. FUTURE REVISIONS OF THIS LICENSE 361
15.1211. RELICENSING . 362

16 How to use this License for your documents 363

17 Contributors 365

List of Figures 367

18 Licenses 371
18.1 GNU GENERAL PUBLIC LICENSE . 371
18.2 GNU Free Documentation License . 372
18.3 GNU Lesser General Public License . 373

1

1 Ada Style Guide/Print version

This is the print version1 of Ada Style Guide2
You won't see this message or any elements not part of the book's content when
you print or preview3 this page.

1 https://en.wikibooks.org/wiki/Help:Print_versions
2 https://en.wikibooks.org/wiki/Ada_Style_Guide
3 https://en.wikibooks.org/w/index.php?title=Ada_Style_Guide/Print_version&printable=

yes

3

https://en.wikibooks.org/wiki/Help:Print_versions
https://en.wikibooks.org/wiki/Ada_Style_Guide
https://en.wikibooks.org/w/index.php?title=Ada_Style_Guide/Print_version&printable=yes
https://en.wikibooks.org/w/index.php?title=Ada_Style_Guide/Print_version&printable=yes

Ada Style Guide/Print version

Figure 2

Augusta Ada King4, Countess of Lovelace.

1.1 Preface
This style guide5 is an update to the Ada 95 Quality and Style Guide6 to reflect the latest
update to the Ada language7, commonly called Ada 20128. The purpose of this guide is to
help computer professionals produce better Ada programs by identifying a set of stylistic
guidelines that will directly impact the quality of their Ada programs. This style guide is

4 https://en.wikipedia.org/wiki/Ada_Lovelace
5 https://en.wikipedia.org/wiki/Programming_style
6 http://www.adaic.org/docs/95style/html/cover.html
7 https://en.wikipedia.org/wiki/Ada_(programming_language)
8 https://en.wikibooks.org/wiki/Ada_Programming/Ada_2012

4

https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Programming_style
http://www.adaic.org/docs/95style/html/cover.html
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikibooks.org/wiki/Ada_Programming/Ada_2012

Preface

not intended to replace the Ada Reference Manual9, or the Rationale10, or to serve as a
tutorial for the Ada programming language11.

The style guide is divided into chapters that map to the major decisions that each program-
mer addresses when creating high-quality, reliable, reusable, and portable Ada software.
Some overlap exists in the chapters because not all programming decisions can be made
independently. Individual chapters address source code presentation, readability, program
structure, programming practice, concurrency, portability, reusability, performance, and a
new chapter on object-oriented features.

Each chapter is divided into guidelines, using a format that supports wide usage because its
content is both prescriptive and tailorable. Each guideline consists of a concise statement
of the principles that should be followed and a rationale explaining why the guideline is
important. The guidelines also provide usage examples, in addition to possible exceptions
to applying the guidelines. Many of the guidelines are specific enough to be adopted as
corporate or project programming standards. Others require a managerial decision on a
particular instantiation before they can be used as standards. In such cases, a sample
instantiation is presented and used throughout the examples.

1.1.1 Background
The Ada Joint Program Office (AJPO) funded the Ada 95 style guide, which was created
by merging a set of guidelines for using Ada 9512 with modifications to the original Ada
Quality and Style: Guidelines for Professional Programmers13, version 02.01.01 (AQ&S
83) (Software Productivity Consortium 1992), developed to support Ada 8314. The Ada
95 guidelines are based on the wealth of data available from the Ada 9X Project, the
AJPO library, and the Ada community at large. The Software Productivity Consortium's
(Consortium's) technical staff authored the update and the Advanced Research Projects
Agency15 (ARPA) participated in the update effort.

The preexisting AQ&S 83 presented a set of guidelines to help the programmer make disci-
plined use of Ada's features. In 1992, the Consortium completed the version 2.1 update to
the style guide under contract to the AJPO. The AJPO referred to that style guide as ”the
suggested style guide for all DoD programs.”

As yet, there is no formal update of the style guide for the Ada 2005 or the Ada 2012
language revision. During an extended discussion at the SIGAda 200816 conference of the
style guide via-a-vis the Ada 2005 update and its continuing relevance, several attendees
volunteered to bring the guide to wikibooks17 to encourage collaborative updating of the
guide by putting the update in the hands of practitioners of the language. This is in
part made possible under the terms of the DoD Ada Joint Program Office's royalty-free,

9 http://www.ada-auth.org/standards/ada12.html
10 http://www.ada-auth.org/standards/rationale12.html
11 https://en.wikibooks.org/wiki/Ada_Programming
12 https://en.wikibooks.org/wiki/Ada_Programming/Ada_95
13 http://archive.adaic.com/docs/style-guide/83style/html/
14 https://en.wikibooks.org/wiki/Ada_Programming/Ada_83
15 https://en.wikipedia.org/wiki/Advanced_Research_Projects_Agency
16 http://www.sigada.org/conf/sigada2008/
17 https://en.wikibooks.org/wiki/Main_Page

5

http://www.ada-auth.org/standards/ada12.html
http://www.ada-auth.org/standards/rationale12.html
https://en.wikibooks.org/wiki/Ada_Programming
https://en.wikibooks.org/wiki/Ada_Programming/Ada_95
http://archive.adaic.com/docs/style-guide/83style/html/
https://en.wikibooks.org/wiki/Ada_Programming/Ada_83
https://en.wikipedia.org/wiki/Advanced_Research_Projects_Agency
http://www.sigada.org/conf/sigada2008/
https://en.wikibooks.org/wiki/Main_Page

Ada Style Guide/Print version

worldwide, non-exclusive, irrevocable license for unlimited use of the material in the Ada
83 and 95 style guides.

6

2 Introduction

2.1 Introduction
Style is an often overlooked but very critical attribute of writing. The style of writing
directly impacts the readability and understandability of the end product. The style of
programming, as the writing of source code in a computer language, also suffers from this
neglect. Programs need to be readable and understandable by humans, not just comparable
by machines. This requirement is important in the creation of quality products that not
only meet user needs but also can be developed on schedule and within estimated cost.
This book is intended to help the computer professional produce better Ada programs. It
presents a set of specific stylistic guidelines for using the powerful features of Ada 95 (Ada
Reference Manual 1995) in a disciplined manner.

Each guideline consists of a concise statement of the principles that should be followed and
a rationale for following the guideline. In most cases, an example of the use of the guideline
is provided, and, in some cases, a further example is included to show the consequences of
violating the guideline. Possible exceptions to the application of the guideline are explicitly
noted, and further explanatory notes are provided, where appropriate. In some cases,
an instantiation is provided to show more specific guidance that could be enforced as a
standard. In selected cases, automation notes discuss how one could automate enforcement
of the guideline.

Ada was designed to support the development of high-quality, reliable, reusable, and
portable software. For a number of reasons, no programming language can ensure the
achievement of these desirable objectives on its own. For example, programming must be
embedded in a disciplined development process that addresses requirements analysis, de-
sign, implementation, verification, validation, and maintenance in an organized way. The
use of the language must conform to good programming practices based on well-established
software engineering principles. This book is intended to help bridge the gap between these
principles and the actual practice of programming in Ada.

Many of the guidelines in this book are designed to promote clear source text. The goal of
these guidelines is to improve the ease of program evolution, adaptation, and maintenance.
Understandable source text is more likely to be correct and reliable. Easy adaptation
requires a thorough understanding of the software; this is considerably facilitated by clarity.
Effective code adaptation is a prerequisite to code reuse, a technique that has the potential
for drastic reductions in system development cost. Finally, because maintenance (really
evolution) is a costly process that continues throughout the life of a system, clarity plays
a major role in keeping maintenance costs down. Over the entire life cycle, code has to
be read and understood far more often than it is written; thus, the investment in writing
readable, understandable code is worthwhile.

7

Introduction

The remaining sections of this introduction discuss the organization of this book and how the
material presented can be used by people in different roles, including new Ada programmers,
experienced Ada programmers, object-oriented programmers, software project managers,
contracting agencies, standards setting organizations, and planners of the transition to Ada
95 from existing Ada 83 (Ada Reference Manual 1983) programs.

2.2 Organization of this Book
The format of this book follows the well-received guideline format of the Ada Quality and
Style: Guidelines for Professional Programmer's, version 02.01.01 (AQ&S 83) (Software
Productivity Consortium 1992). The style guide is divided into sections that map to the
major decisions that each programmer must make when creating high-quality, reliable,
reusable, and portable Ada software. Some overlap exists in the sections because not all
programming decisions can be made independently.

Individual chapters address source code presentation, readability, program structure, pro-
gramming practices, concurrency, portability, reusability, and performance, and a new chap-
ter addresses object-oriented features. Each chapter ends with a summary of the guidelines
it contains. The last chapter shows a complete implementation of the Dining Philosophers
example, provided by Dr. Michael B. Feldman and Mr. Bjorn Kallberg. Many of the guide-
lines in this book were used to create this example. An appendix provides a cross-reference
matrix between the Ada Reference Manual (1995) sections and the guidelines in this style
guide.

This book is written using the general software engineering vocabulary developed over the
last 20 years. Software engineering is a rapidly evolving discipline with relatively new
concepts and terminology. However, to establish a common frame of reference, needed
definitions are extracted from the Ada Reference Manual (1995) and Rationale (1995).

Throughout the book, references are made to other sources of information about Ada style
and other Ada issues. The references are listed at the end of the book. A bibliography is
also provided.

In this book, the term ”Ada” refers to the latest Ada standard, released in February 1995
(sometimes also known as Ada 95). References to the earlier Ada standard are clearly
denoted as ”Ada 83.”

2.2.1 Source Code Presentation and Readability
Chapters 2 and 3 directly address the issues of creating clear, readable, and understandable
source text. Chapter 2 focuses on code formatting, and Chapter 3 addresses issues of use
of comments, naming conventions, and types.

There are two main aspects of code clarity: (1) careful and consistent layout of the source
text on the page or the screen, covered by Chapter 2, that can enhance readability dramat-
ically; (2) careful attention to the structure of code, covered by Chapter 3, that can make
the code easier to understand. This is true both on the small scale (e.g., by careful choice
of identifier names or by disciplined use of loops) and on the large scale (e.g., by proper use
of packages). These guidelines treat both layout and structure.

8

Organization of this Book

Code formatting and naming convention preferences tend to be very personal. You must
balance your personal likes and dislikes with those of other engineers on the project so that
you can agree to a consistent set of conventions that the whole project team will follow.
Automatic code formatters can help in enforcing this kind of consistency.

2.2.2 Program Structure
Chapter 4 addresses overall program structure. Proper structure improves program clarity.
This is analogous to readability on lower levels and includes issues of high-level structure, in
particular the use of packages and child packages, visibility, and exceptions. The majority
of the guidelines in this chapter are concerned with the application of sound software en-
gineering principles, such as information hiding, abstraction, encapsulation, and separation
of concerns.

2.2.3 Programming Practices
Chapter 5 presents guidelines that define consistent and logical language feature usage.
These guidelines address optional parts of the syntax, types, data structures, expressions,
statements, visibility, exceptions, and erroneous execution.

2.2.4 Concurrency
Chapter 6 defines the correct use of concurrency to develop predictable, reliable, reusable,
and portable software. The topics include tasking, protected units, communication, and
termination. One major area of enhancement of the Ada language has been better support
for shared data. The task mechanism had been the only available approach to protecting
shared data. The guidelines in this chapter support the use of protected types to encapsulate
and synchronize access to shared data.

2.2.5 Portability and Reusability
Chapters 7 and 8 address issues of designing for change from slightly different perspectives.
Chapter 7 addresses the fundamentals of portability, the ease of changing software from one
computer system or environment to another, and the impact of specific feature usage on
portability. Chapter 8 addresses code reusability, the extent to which code can be used in
different applications with minimal change.

The portability guidelines discussed in Chapter 7 need careful attention. Adherence to
them is important even if the need to port the resulting software is not currently foreseen.
Following the guidelines improves the potential reusability of the resulting code in projects
that use different Ada implementations. You should insist that when particular project
needs force the relaxation of some of the portability guidelines, nonportable features of the
source text are prominently indicated.

The reusability guidelines given in Chapter 8 are based on the principles of encapsulation
and design for change. These guidelines stress that understanding and clarity, robustness,
adaptability, and independence are useful and desirable, even when reuse is not expected,
because the resulting code is more resistant to both planned and unplanned change.

9

Introduction

2.2.6 Object-Oriented Features
Chapter 9 defines a set of guidelines in common objected-oriented terms that exploit some
of the features of Ada 95 that are not in Ada 83. The guidelines discuss the use of the
new Ada features of type extension (tagged types), abstract tagged types, and abstract
subprograms to implement single inheritance, multiple inheritance, and polymorphism.

2.2.7 Performance
Chapter 10 defines a set of guidelines intended to enhance performance. It is recognized that
some approaches to performance are at odds with maintainability and portability. Most
of the guidelines in this chapter read ”. . . when measured performance indicates.” ”Indi-
cates” means that you have determined that the benefit in increased performance to your
application in your environment outweighs the negative side effects on understandability,
maintainability, and portability of the resulting code.

2.3 How To Use This Book
This book is intended for those involved in the actual development of software systems
written in Ada. The following sections discuss how to make the most effective use of the
material presented. Readers with different levels of Ada experience or different roles in a
software project will need to use the book in different ways.

There are a number of ways in which this book can be used: as a guide to good Ada style;
as a comprehensive list of guidelines that will contribute to better Ada programs; or as a
reference work to consult for usage examples of and design-tradeoff discussion on specific
features of the language. The book contains many guidelines, some of which are quite
complex. Learning them all at the same time should not be necessary; it is unlikely that
you will be using all the features of the language at once. However, it is recommended
that all programmers (and, where possible, other Ada project staff) make an effort to read
and understand Chapters 2, 3, 4, and Chapter 5 up to Section 5.7. Some of the material
is quite difficult (e.g., Section 4.2, which discusses visibility), but it covers issues that are
fundamental to the effective use of Ada and is important for any software professional
involved in building Ada systems.

This book is not intended as an introductory text on Ada or as a complete manual of the Ada
language. It is assumed that you already know the syntax of Ada and have a rudimentary
understanding of the semantics. With such a background, you should find the guidelines
useful, informative, and often enlightening.

If you are learning Ada, you should equip yourself with a comprehensive introduction to
the language. Two good introductory texts on Ada 83 are Barnes (1989) and Cohen (1986).
Both authors have published new books that cover Ada 95 (Barnes 1996, Cohen 1996). Once
you become familiar with these texts, you are encouraged to use them in conjunction with
Rationale (1995). The Ada Reference Manual (1995) should be regarded as a companion to
these books. The majority of guidelines reference the sections of the Ada Reference Manual
(1995) that define the language features being discussed. Appendix A cross references
sections of the Ada Language Reference Manual to the guidelines.

10

How To Use This Book

2.3.1 To The New Ada Programmer
At first sight, Ada offers a bewildering variety of features. It is a powerful tool intended
to solve difficult problems, and almost every feature has a legitimate application in some
context. This makes it especially important to use Ada's features in a disciplined and
organized way. Following the guidelines can make learning Ada easier and help you to
master its apparent complexity. From the beginning, you can write programs that exploit
the best features of the language in the way that the designers intended.

Programmers experienced in using other programming languages are often tempted to use
Ada as if it were their familiar language but with irritating syntactic differences. This pitfall
should be avoided at all costs; it can lead to convoluted code that subverts exactly those
aspects of Ada that make it so suitable for building high-quality systems. You must learn
to ”think Ada.” Following the guidelines in this book and reading the examples of their use
will help you to do this as quickly and painlessly as possible.

To some degree, novice programmers learning Ada have an advantage. Following the guide-
lines from the beginning helps in developing a clear programming style that effectively
exploits the language. If you are in this category, it is recommended that you adopt the
guidelines for those exercises you perform as part of learning Ada. Initially, developing
sound programming habits by concentrating on the guidelines themselves and their sup-
porting examples is more important than understanding the rationale for each guideline.

The rationale for many of the guidelines helps experienced programmers understand and
accept the suggestions presented in the guideline. Some of the guidelines themselves are
also written for the experienced programmer who must make engineering tradeoffs. This is
especially true in the areas of portability, reusability, and performance. These more difficult
guidelines and rationale will make you aware of the issues affecting each programming
decision. You can then use that awareness to recognize the engineering tradeoffs that you
will eventually be asked to make when you are the experienced Ada programmer.

2.3.2 To The Experienced Ada Programmer
As an experienced Ada programmer, you are already writing code that conforms to many
of the guidelines in this book. In some areas, however, you may have adopted a personal
programming style that differs from that presented here, and you might be reluctant to
change. Carefully review those guidelines that are inconsistent with your current style,
make sure that you understand their rationale, and consider adopting them. The overall
set of guidelines in this book embodies a consistent approach to producing high-quality
programs that would be weakened by too many exceptions.

Consistency is another important reason for general adoption of common guidelines. If all
the staff of a project write source text in the same style, many critical project activities
are easier. Consistent code simplifies formal and informal code reviews, system integration,
code reuse within a project, and the provision and application of supporting tools. In
practice, corporate or project standards may require deviations from the guidelines to be
explicitly commented, so adopting a nonstandard approach may require extra work.

Some of the guidelines in this book, particularly in the chapters on concurrency, portability,
reusability, object-oriented features, and performance, focus on design tradeoffs. These

11

Introduction

guidelines ask you to consider whether using an Ada feature is an appropriate design decision
for your application. There are often several ways to implement a particular design decision,
and these guidelines discuss the tradeoffs you should consider in making your decision.

2.3.3 To Experienced Object-Oriented Programmers
As an experienced object-oriented programmer, you will appreciate the effort that has gone
into elegantly extending the Ada language to include powerful object-oriented features.
These new features are integrated tightly with the existing language features and vocab-
ulary. This book is intentionally written to provide a view from the perspective of style;
therefore, Ada object-oriented features are used throughout the book. Disciplined use of
these features will promote programs that are easier to read and modify. These features also
give you flexibility in building reusable components. Chapter 9 addresses object-oriented
programming and the issues of inheritance and polymorphism. Earlier chapters cross refer-
ence the Chapter 9 guidelines.

You will find it easier to take advantage of many of the concepts in Chapter 9 if you have
done an object-oriented design. The results of an object-oriented design would include a
set of meaningful abstractions and hierarchy of classes. The abstractions need to include
the definition of the design objects, including structure and state, the operations on the
objects, and the intended encapsulation for each object. The details on designing these
abstractions and the hierarchy of classes are beyond the scope of this book. A number of
good sources exist for this detail, including Rumbaugh et al. (1991), Jacobson et al. (1992),
the ADARTS Guidebook (Software Productivity Consortium 1993), and Booch (1994).

2.3.4 To The Software Project Manager
Technical management plays a key role in ensuring that the software produced in the course
of a project is correct, reliable, maintainable, and portable. Management must create a
project-wide commitment to the production of high-quality code; define project-specific
coding standards and guidelines; foster an understanding of why uniform adherence to the
chosen coding standards is critical to product quality; and establish policies and procedures
to check and enforce that adherence. The guidelines contained in this book can aid such an
effort.

An important activity for managers is the definition of coding standards for a project or
organization. These guidelines do not, in themselves, constitute a complete set of standards;
however, they can serve as a basis for standards. Several guidelines indicate a range of
decisions, but they do not prescribe a particular decision. For example, the second guideline
in the book (Guideline 2.1.2) advocates using a consistent number of spaces for indentation
and indicates in the rationale that two to four spaces would be reasonable. With your
senior technical staff, you should review each such guideline and arrive at a decision about
its instantiation that will constitute your project or organizational standard.

Two other areas require managerial decisions about standardization. Guideline 3.1.4 ad-
vises you to avoid arbitrary abbreviations in object or unit names. You should prepare a
glossary of acceptable abbreviations for a project that allows the use of shorter versions
of application-specific terms (e.g., FFT for Fast Fourier Transform or SPN for Stochastic
Petri Net). You should keep this glossary short and restrict it to terms that need to be

12

How To Use This Book

used frequently as part of names. Having to refer continually to an extensive glossary to
understand source text makes it hard to read.

The portability guidelines given in Chapter 7 need careful attention. Adherence to them is
important even if the need to port the resulting software is not currently foreseen. Following
the guidelines improves the potential reusability of the resulting code in projects that use
different Ada implementations. You should insist that when particular project needs force
the relaxation of some of the portability guidelines, nonportable features of the source
text are prominently indicated. Observing the Chapter 7 guidelines requires definition and
standardization of project- or organization-specific numeric types to be used in place of the
(potentially nonportable) predefined numeric types.

Your decisions on standardization issues should be incorporated in a project or organization
coding standards document. With coding standards in place, you need to ensure adherence
to them. Gaining the wholehearted commitment of your programming staff to use the
standards is critical. Given this commitment and the example of high-quality Ada being
produced by your programmers, it will be far easier to conduct effective formal code reviews
that check compliance to project standards.

Some general issues concerning the management of Ada projects are discussed by Hefley, et
al. (1992).

2.3.5 To Contracting Agencies And Standards Organizations
Many of the guidelines presented here are specific enough to be adopted as corporate or
project programming standards. Others require a managerial decision on a particular in-
stantiation before they can be used as standards. In such cases, a sample instantiation is
presented and used throughout the examples. Such instantiations should be recognized as
weaker recommendations than the guidelines themselves. In some cases, where the examples
are extracted from a published work, the author's style is used unchanged.

Other guidelines presented in this book are intentionally phrased in terms of design choices
to consider. These guidelines cannot be instantiated as hard-and-fast rules that a project
must follow. For example, you should not interpret Guidelines 6.1.1 and 6.1.2 to mean
that a project is forbidden to use tasks. Rather, these guidelines are intended to help the
designer make the tradeoffs between using protected objects and tasks, thus leading the
designer to make a more informed choice between these features.

The guidelines in this document are not intended to stand alone as a standard. In some
cases, it is not clear that a guideline could be enforced because it is only intended to make
the engineer aware of tradeoffs. In other cases, a choice still remains about a guideline, such
as how many spaces to use for each level of indentation.

When a guideline is too general to show an example, the ”instantiation” section of each guide-
line contains more specific guidelines. These instantiations can be considered a standard
and are more likely to be enforceable. Any organization that attempts to extract standards
from this document needs to evaluate the complete context. Each guideline works best
when related guidelines are practiced. In isolation, a guideline may have little or no benefit.

13

Introduction

2.3.6 To Ada 83 To Ada 95 Transition Planners
Transitioning issues fall into two major categories: the incompatibilities between the lan-
guages, in particular, upward compatibility, and exploitation of new language features.

Upward compatibility of Ada 95 was a major design goal of the language. The small number
of incompatibilities between Ada 83 and Ada 95 that are likely to occur in practice are
easily overcome (see Ada 95 Rationale [1995] Appendix X entitled Upward Compatibility).
Detailed information on compatibility issues can be found in Taylor (1995) and Intermetrics
(1995).

The transition planner can gain insight from this book into the exploitation of language
features in two ways. First, Table 1 shows the impact of new Ada 95 language features on
style guide chapters. Second, Appendix A maps Ada Reference Manual (1995) sections to
specific style guidelines.

2.4 Typographic Conventions
This style guide uses the following typographic conventions:

• Serif font General presentation of information.
• Italicized serif font Publication titles and emphasis.
• Boldfaced serif font Section headings.
• Boldfaced sans serif font Subheadings for guideline, instantiation, example, rationale,
notes, exceptions, automation notes, caution, and subheadings in Summary sections.

• Typewriter font:
Syntax of code.

14

3 Source Code Presentation

3.1 Introduction
The physical layout of source text on the page or screen has a strong effect on its readability.
This chapter contains source code presentation guidelines intended to make the code more
readable.

In addition to the general purpose guidelines, specific recommendations are made in the
”instantiation” sections. If you disagree with the specific recommendations, you may want
to adopt your own set of conventions that still follow the general purpose guidelines. Above
all, be consistent across your entire project.

An entirely consistent layout is hard to achieve or check manually. Therefore, you may
prefer to automate layout with a tool for parameterized code formatting or incorporate
the guidelines into an automatic coding template. Some of the guidelines and specific
recommendations presented in this chapter cannot be enforced by a formatting tool because
they are based on the semantics, not the syntax, of the Ada code. More details are given
in the ”automation notes” sections.

3.2 Code Formatting
The ”code formatting” of Ada source code affects how the code looks, not what the code
does. Topics included here are horizontal spacing, indentation, alignment, pagination, and
line length. The most important guideline is to be consistent throughout the compilation
unit as well as the project.

3.2.1 Horizontal Spacing
guideline
• Use consistent spacing around delimiters.
• Use the same spacing as you would in regular prose.

instantiation
Specifically, leave at least one blank space in the following places, as shown in the examples
throughout this book. More spaces may be required for the vertical alignment recommended
in subsequent guidelines.

• Before and after the following delimiters and binary operators:

15

Source Code Presentation

+ - * / &
< = > /= <= >=
:= => | ..
:
<>

• Outside of the quotes for string (”) and character (') literals, except where prohibited.
• Outside, but not inside, parentheses.
• After commas (,) and semicolons (;).

Do not leave any blank spaces in the following places, even if this conflicts with the above
recommendations.

• After the plus (+) and minus (-) signs when used as unary operators.
• After a function call.
• Inside of label delimiters (<< >>).
• Before and after the exponentiation operator (**), apostrophe ('), and period (.)
• Between multiple consecutive opening or closing parentheses.
• Before commas (,) and semicolons (;).

When superfluous parentheses are omitted because of operator precedence rules, spaces may
optionally be removed around the highest precedence operators in that expression.

example
Default_String : constant String :=

"This is the long string returned by" &
" default. It is broken into multiple" &
" Ada source lines for convenience.";

type Signed_Whole_16 is range -2**15 .. 2**15 - 1;
type Address_Area is array (Natural range <>) of Signed_Whole_16;

Register : Address_Area (16#7FF0# .. 16#7FFF#);
Memory : Address_Area (0 .. 16#7FEC#);

Register (Pc) := Register (A);

X := Signed_Whole_16 (Radius * Sin (Angle));

Register (Index) := Memory (Base_Address + Index * Element_Length);

Get (Value => Sensor);

Error_Term := 1.0 - (Cos (Theta)**2 + Sin (Theta)**2);

Z := X**3;
Y := C * X + B;
Volume := Length * Width * Height;

rationale
It is a good idea to use white space around delimiters and operators because they are typ-
ically short sequences (one or two characters) that can easily get lost among the longer
keywords and identifiers. Putting white space around them makes them stand out. Consis-
tency in spacing also helps make the source code easier to scan visually.

16

Code Formatting

However, many of the delimiters (commas, semicolons, parentheses, etc.) are familiar as
normal punctuation marks. It is distracting to see them spaced differently in a computer
program than in normal text. Therefore, use the same spacing as in text (no spaces before
commas and semicolons, no spaces inside parentheses, etc.).

exceptions
The one notable exception is the colon (:). In Ada, it is useful to use the colon as a tabulator
or a column separator (see Guideline 2.1.4). In this context, it makes sense to put spaces
before and after the colon rather than only after it as in normal text.

automation notes
The guidelines in this section are easily enforced with an automatic code formatter.

3.2.2 Indentation
guideline
• Indent and align nested control structures, continuation lines, and embedded units con-
sistently.

• Distinguish between indentation for nested control structures and for continuation lines.
• Use spaces for indentation, not the tab character (Nissen and Wallis 1984, §2.2).

instantiation
Specifically, the following indentation conventions are recommended, as shown in the exam-
ples throughout this book. Note that the minimum indentation is described. More spaces
may be required for the vertical alignment recommended in subsequent guidelines.

• Use the recommended paragraphing shown in the Ada Reference Manual (1995).
• Use three spaces as the basic unit of indentation for nesting.
• Use two spaces as the basic unit of indentation for continuation lines.

A label is outdented three spaces:

begin
<<label>>

<statement>
end;

<long statement with line break>
<trailing part of same statement>

The if statement and the plain loop:

17

Source Code Presentation

if <condition> then
<statements>

elsif <condition> then
<statements>

else
<statements>

end if;

<name>:
loop

<statements>
exit when <condition>;
<statements>

end loop <name>;

Loops with the for and while iteration schemes:

<name>:
for <scheme> loop

<statements>
end loop <name>;

<name>:
while <condition> loop

<statements>
end loop <name>;

The block and the case statement as recommended in the Ada Reference Manual (1995):

<name>:
declare

<declarations>
begin

<statements>
exception

when <choice> =>
<statements>

when others =>
<statements>

end <name>;

case <expression> is
when <choice> =>

<statements>
when <choice> =>

<statements>
when others =>

<statements>
end case; --<comment>

These case statements save space over the Ada Reference Manual (1995) recommendation
and depend on very short statement lists, respectively. Whichever you choose, be consistent:

case <expression> is
when <choice> =>

<statements>
when <choice> =>

<statements>
when others =>

<statements>
end case;

case <expression> is
when <choice> => <statements>

<statements>
when <choice> => <statements>
when others => <statements>

end case;

The various forms of selective accept and the timed and conditional entry calls:

18

Code Formatting

select
when <guard> =>

<accept statement>
<statements>

or
<accept statement>
<statements>

or
when <guard> =>

delay <interval>;
<statements>

or
when <guard> =>

terminate;
else

<statements>
end select;

select
<entry call>;
<statements>

or
delay <interval>;
<statements>

end select;

select
<entry call>;
<statements>

else
<statements>

end select;

select
<triggering alternative>

then abort
<abortable part>

end select;

The accept statement:

accept <specification> do
<statements>

end <name>;

separate (<parent unit>)
<proper body>

A subunit:
separate (<parent unit>)
<proper body>
end <name>;

Proper bodies of program units:

procedure <specification> is
<declarations>

begin
<statements>

exception
when <choice> =>

<statements>
end <name>;

function <specification>
return <type name> is
<declarations>

begin
<statements>

exception
when <choice> =>

<statements>
end <name>;

package body <name> is
<declarations>

begin
<statements>

exception
when <choice>=>

<statements>
end <name>;

task body <name> is
<declarations>

begin
<statements>

exception
when <choice>=>

<statements>
end <name>;

19

Source Code Presentation

Context clauses on compilation units are arranged as a table. Generic formal parameters
do not obscure the unit itself. Function, package, and task specifications use standard
indentation:

with <name>; use <name>;
with <name>;
with <name>;

<compilation unit>

generic
<formal parameters>

<compilation unit>

function <specification>
return <type>;

package <name> is
<declarations>

private
<declarations>

end <name>;

task type <name> is
<entry declarations>

end <name>;

Instantiations of generic units and record indentation:

procedure <name> is
new <generic name> <actuals>

function <name> is
new <generic name> <actuals>

package <name> is
new <generic name> <actuals>

type ... is
record

<component list>
case <discriminant name> is

when <choice> =>
<component list>

when <choice> =>
<component list>

end case;
end record;

Indentation for record alignment:
for <name> use

record <mod clause>
<component clause>

end record;

Tagged types and type extension:
type ... is tagged

record
<component list>

end record;

type ... is new ... with
record

<component list>
end record;

20

Code Formatting

example
Default_String : constant String :=

"This is the long string returned by" &
" default. It is broken into multiple" &
" Ada source lines for convenience.";

...

if Input_Found then
Count_Characters;

else --not Input_Found
Reset_State;
Character_Total :=

First_Part_Total * First_Part_Scale_Factor +
Second_Part_Total * Second_Part_Scale_Factor +
Default_String'Length + Delimiter_Size;

end if;

end loop;

rationale
Indentation improves the readability of the code because it gives you a visual indicator of
the program structure. The levels of nesting are clearly identified by indentation, and the
first and last keywords in a construct can be matched visually.

While there is much discussion on the number of spaces to indent, the reason for indentation
is code clarity. The fact that the code is indented consistently is more important than the
number of spaces used for indentation.

Additionally, the Ada Reference Manual 1995, §1.1.4 1 [Annotated2] states that the layout
shown in the examples and syntax rules in the manual is the recommended code layout to
be used for Ada programs: ”The syntax rules describing structured constructs are presented
in a form that corresponds to the recommended paragraphing Different lines are
used for parts of a syntax rule if the corresponding parts of the construct described by the
rule are intended to be on different lines It is recommended that all indentation be
by multiples of a basic step of indentation (the number of spaces for the basic step is not
defined).”

It is important to indent continuation lines differently from nested control structures to
make them visually distinct. This prevents them from obscuring the structure of the code
as you scan it.

Listing context clauses on individual lines allows easier maintenance; changing a context
clause is less error-prone.

Indenting with spaces is more portable than indenting with tabs because tab characters are
displayed differently by different terminals and printers.

1 http://www.adaic.com/standards/95lrm/html/RM-1-1-4.html

21

http://www.adaic.com/standards/95lrm/html/RM-1-1-4.html

Source Code Presentation

exceptions
If you are using a variable width font, tabs will align better than spaces. However, depending
on your tab setting, lines of successive indentation may leave you with a very short line
length.

automation notes
The guidelines in this section are easily enforced with an automatic code formatter.

3.2.3 Alignment of Operators
guideline
• Align operators vertically to emphasize local program structure and semantics.

example
if Slot_A >= Slot_B then

Temporary := Slot_A;
Slot_A := Slot_B;
Slot_B := Temporary;

end if;

--
Numerator := B**2 - 4.0 * A * C;
Denominator := 2.0 * A;
Solution_1 := (B + Square_Root(Numerator)) / Denominator;
Solution_2 := (B - Square_Root(Numerator)) / Denominator;
--

X := A * B +
C * D +
E * F;

Y := (A * B + C) + (2.0 * D - E) - -- basic equation
3.5; -- account for error factor

rationale
Alignment makes it easier to see the position of the operators and, therefore, puts visual
emphasis on what the code is doing.

The use of lines and spacing on long expressions can emphasize terms, precedence of op-
erators, and other semantics. It can also leave room for highlighting comments within an
expression.

exceptions
If vertical alignment of operators forces a statement to be broken over two lines, especially if
the break is at an inappropriate spot, it may be preferable to relax the alignment guideline.

22

Code Formatting

automation notes
The last example above shows a kind of ”semantic alignment” that is not typically enforced
or even preserved by automatic code formatters. If you break expressions into semantic
parts and put each on a separate line, beware of using a code formatter later. It is likely
to move the entire expression to a single line and accumulate all the comments at the end.
However, there are some formatters that are intelligent enough to leave a line break intact
when the line contains a comment. A good formatter will recognize that the last example
above does not violate the guidelines and would, therefore, preserve it as written.

3.2.4 Alignment of Declarations
guideline
• Use vertical alignment to enhance the readability of declarations.
• Provide, at most, one declaration per line.
• Indent all declarations in a single declarative part at the same level.

instantiation
For declarations not separated by blank lines, follow these alignment rules:

• Align the colon delimiters.
• Align the := initialization delimiter.
• When trailing comments are used, align the comment delimiter.
• When the declaration overflows a line, break the line and add an indentation level for
those lines that wrap. The preferred places to break, in order, are: (1) the comment
delimiter; (2) the initialization delimiter; (3) the colon delimiter.

• For enumeration type declarations that do not fit on a single line, put each literal on a
separate line, using the next level of indentation. When appropriate, semantically related
literals can be arranged by row or column to form a table.

example
Variable and constant declarations can be laid out in a tabular format with columns sepa-
rated by the symbols :, :=, and --

Prompt_Column : constant := 40;
Question_Mark : constant String := " ? "; -- prompt on error input
Prompt_String : constant String := " ==> ";

If this results in lines that are too long, they can be laid out with each part on a separate
line with its unique indentation level:

subtype User_Response_Text_Frame is String (1 .. 72);
-- If the declaration needed a comment, it would fit here.
Input_Line_Buffer : User_Response_Text_Frame

:= Prompt_String &
String'(1 .. User_Response_Text_Frame'Length -

Prompt_String'Length => ' ');

Declarations of enumeration literals can be listed in one or more columns as:

23

Source Code Presentation

type Op_Codes_In_Column is
(Push,
Pop,
Add,
Subtract,
Multiply,
Divide,
Subroutine_Call,
Subroutine_Return,
Branch,
Branch_On_Zero,
Branch_On_Negative);

or, to save space:
type Op_Codes_Multiple_Columns is

(Push, Pop, Add,
Subtract, Multiply, Divide,
Subroutine_Call, Subroutine_Return, Branch,
Branch_On_Zero, Branch_On_Negative);

or, to emphasize related groups of values:
type Op_Codes_In_Table is

(Push, Pop,
Add, Subtract, Multiply, Divide,
Subroutine_Call, Subroutine_Return,
Branch, Branch_On_Zero, Branch_On_Negative);

rationale
Many programming standards documents require tabular repetition of names, types, initial
values, and meaning in unit header comments. These comments are redundant and can
become inconsistent with the code. Aligning the declarations themselves in tabular fash-
ion (see the examples above) provides identical information to both compiler and reader;
enforces, at most, one declaration per line; and eases maintenance by providing space for
initializations and necessary comments. A tabular layout enhances readability, thus pre-
venting names from ”hiding” in a mass of declarations. This applies to all declarations:
types, subtypes, objects, exceptions, named numbers, and so forth.

automation notes
Most of the guidelines in this section are easily enforced with an automatic code formatter.
The one exception is the last enumerated type example, which is laid out in rows based on
the semantics of the enumeration literals. An automatic code formatter will not be able
to do this and will likely move the enumeration literals to different lines. However, tools
that are checking only for violations of the guidelines should accept the tabular form of an
enumeration type declaration.

24

Code Formatting

3.2.5 More on Alignment
guideline
• Align parameter modes and parentheses vertically.

instantiation
Specifically, it is recommended that you:

• Place one formal parameter specification per line.
• Vertically align parameter names, colons, the reserved word in, the reserved word out,
and parameter subtypes.

• Place the first parameter specification on the same line as the subprogram or entry name.
If any parameter subtypes are forced beyond the line length limit, place the first parameter
specification on a new line indented the same as a continuation line.

example
procedure Display_Menu (Title : in String;

Options : in Menus;
Choice : out Alpha_Numerics);

The following two examples show alternate instantiations of this guideline:
procedure Display_Menu_On_Primary_Window

(Title : in String;
Options : in Menus;
Choice : out Alpha_Numerics);

or:
procedure Display_Menu_On_Screen (

Title : in String;
Options : in Menus;
Choice : out Alpha_Numerics

);

Aligning parentheses makes complicated relational expressions more clear:
if not (First_Character in Alpha_Numerics and then

Valid_Option(First_Character)) then

rationale
This alignment facilitates readability and understandability, and it is easy to achieve given
automated support. Aligning parameter modes provides the effect of a table with columns
for parameter name, mode, subtype, and, if necessary, parameter-specific comments. Ver-
tical alignment of parameters across subprograms within a compilation unit increases the
readability even more.

25

Source Code Presentation

notes
Various options are available for subprogram layout. The second example above aligns all
of the subprogram names and parameter names in a program. This has the disadvantage
of occupying an unnecessary line where subprogram names are short and looking awkward
if there is only one parameter.

The third example is a format commonly used to reduce the amount of editing required
when parameter lines are added, deleted, or reordered. The parentheses do not have to
be moved from line to line. However, the last parameter line is the only one without a
semicolon.

exceptions
When an operator function has two or more formal parameters of the same type, it is more
readable to declare the parameters in a single one-line list rather than to separate the formal
parameter list into multiple formal parameter specifications.

type Color_Scheme is (Red, Purple, Blue, Green, Yellow, White, Black, Brown,
Gray, Pink);

function "&" (Left, Right : Color_Scheme) return Color_Scheme;

automation notes
Most of the guidelines in this section are easily enforced with an automatic code formatter.
The one exception is the last example, which shows vertical alignment of parentheses to
emphasize terms of an expression. This is difficult to achieve with an automatic code
formatter unless the relevant terms of the expression can be determined strictly through
operator precedence.

3.2.6 Blank Lines
guideline
• Use blank lines to group logically related lines of text (NASA 1987).

example
if ... then

for ... loop
...

end loop;

end if;

This example separates different kinds of declarations with blank lines:
type Employee_Record is

record
Legal_Name : Name;

26

Code Formatting

Date_Of_Birth : Date;
Date_Of_Hire : Date;
Salary : Money;

end record;

type Day is
(Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday);

subtype Weekday is Day range Monday .. Friday;
subtype Weekend is Day range Saturday .. Sunday;

rationale
When blank lines are used in a thoughtful and consistent manner, sections of related code
are more visible to readers.

automation notes
Automatic formatters do not enforce this guideline well because the decision on where to
insert blank lines is a semantic one. However, many formatters have the ability to leave
existing blank lines intact. Thus, you can manually insert the lines and not lose the effect
when you run such a formatter.

3.2.7 Pagination
guideline
• Highlight the top of each package or task specification, the top of each program unit
body, and the end statement of each program unit.

instantiation
Specifically, it is recommended that you:

• Use file prologues, specification headers, and body headers to highlight those structures
as recommended in Guideline 3.3.

• Use a line of dashes, beginning at the same column as the current indentation to highlight
the definition of nested units embedded in a declarative part. Insert the line of dashes
immediately before and immediately after the definition.

• If two dashed lines are adjacent, omit the longer of the two.

example
with Basic_Types;
package body SPC_Numeric_Types is

function Max

(Left : in Basic_Types.Tiny_Integer;
Right : in Basic_Types.Tiny_Integer)

return Basic_Types.Tiny_Integer is

27

Source Code Presentation

begin
if Right < Left then

return Left;
else

return Right;
end if;

end Max;

function Min

(Left : in Basic_Types.Tiny_Integer;
Right : in Basic_Types.Tiny_Integer)
return Basic_Types.Tiny_Integer is

begin
if Left < Right then

return Left;
else

return Right;
end if;

end Min;

use Basic_Types;

begin -- SPC_Numeric_Types
Max_Tiny_Integer := Min(System_Max, Local_Max);
Min_Tiny_Integer := Max(System_Min, Local_Min);
-- ...

end SPC_Numeric_Types;

rationale
It is easy to overlook parts of program units that are not visible on the current page or
screen. The page lengths of presentation hardware and software vary widely. By clearly
marking the program's logical page boundaries (e.g., with a dashed line), you enable a
reader to quickly check whether all of a program unit is visible. Such pagination also makes
it easier to scan a large file quickly, looking for a particular program unit.

exceptions
This guideline does not address code layout on the physical ”page” because the dimensions
of such pages vary widely and no single guideline is appropriate.

automation notes
The guidelines in this section are easily enforced with an automatic code formatter.

3.2.8 Number of Statements Per Line
guideline
• Start each statement on a new line.
• Write no more than one simple statement per line.
• Break compound statements over multiple lines.

example
Use:

28

Code Formatting

if End_Of_File then
Close_File;

else
Get_Next_Record;

end if;

rather than:
if End_Of_File then Close_File; else Get_Next_Record; end if;

exceptional case:
Put("A="); Natural_IO.Put(A); New_Line;
Put("B="); Natural_IO.Put(B); New_Line;
Put("C="); Natural_IO.Put(C); New_Line;

rationale
A single statement on each line enhances the reader's ability to find statements and helps
prevent statements being missed. Similarly, the structure of a compound statement is clearer
when its parts are on separate lines.

exceptions
If a statement is longer than the remaining space on the line, continue it on the next line.
This guideline includes declarations, context clauses, and subprogram parameters.

According to the Ada Reference Manual 1995, §1.1.4 3 [Annotated4], ”The preferred places
for other line breaks are after semicolons.”

automation notes
The guidelines in this section are easily enforced with an automatic code formatter, with the
single exception of the last example, which shows a semantic grouping of multiple statements
onto a single line.

exceptions
The example of Put and New_Line statements shows a legitimate exception. This grouping
of closely related statements on the same line makes the structural relationship between the
groups clear.

3.2.9 Source Code Line Length
guideline
• Adhere to a maximum line length limit for source code (Nissen and Wallis 1984, §2.3).

3 http://www.adaic.com/standards/95lrm/html/RM-1-1-4.html

29

http://www.adaic.com/standards/95lrm/html/RM-1-1-4.html

Source Code Presentation

instantiation
Specifically, it is recommended that you:

• Limit source code line lengths to a maximum of 72 characters.

rationale
When Ada code is ported from one system to another, there may be restrictions on the record
size of source line statements, possibly for one of the following reasons: some operating
systems may not support variable length records for tape I/O, or some printers and terminals
support an 80-character line width with no line-wrap. See further rationale in the note for
Guideline 7.1.2.

Source code must sometimes be published for various reasons, and letter-size paper is not
as forgiving as a computer listing in terms of the number of usable columns.

In addition, there are human limitations in the width of the field of view for understanding
at the level required for reading source code. These limitations correspond roughly to the
70- to 80-column range.

exceptions
An alternate instantiation is to limit source code length to 79 characters. The 79-character
limit differentiates the code from the FORTRAN 72-character limit. It also avoids problems
with 80-character width terminals where the character in the last column may not print
correctly.

automation notes
The guidelines in this section are easily enforced with an automatic code formatter.

3.3 Summary
3.3.1 code formatting
• Use consistent spacing around delimiters.
• Use the same spacing as you would in regular prose.
• Indent and align nested control structures, continuation lines, and embedded units con-
sistently.

• Distinguish between indentation for nested control structures and for continuation lines.
• Use spaces for indentation, not the tab character (Nissen and Wallis 1984, §2.2).
• Align operators vertically to emphasize local program structure and semantics.
• Use vertical alignment to enhance the readability of declarations.
• Provide, at most, one declaration per line.
• Indent all declarations in a single declarative part at the same level.
• Align parameter modes and parentheses vertically.
• Use blank lines to group logically related lines of text (NASA 1987).

30

Summary

• Highlight the top of each package or task specification, the top of each program unit
body, and the end statement of each program unit.

• Start each statement on a new line.
• Write no more than one simple statement per line.
• Break compound statements over multiple lines.
• Adhere to a maximum line length limit for source code (Nissen and Wallis 1984, §2.3).

31

4 Readability

4.1 Introduction
This chapter recommends ways of using Ada features to make reading and understanding
code easier. There are many myths about comments and readability. The responsibility for
true readability rests more with naming and code structure than with comments. Having
as many comment lines as code lines does not imply readability; it more likely indicates the
writer does not understand what is important to communicate.

4.2 Spelling
Spelling conventions in source code include rules for capitalization and use of underscores,
numbers, and abbreviations. If you follow these conventions consistently, the resulting code
is clearer and more readable.

4.2.1 Use of Underscores
guideline
• Use underscores to separate words in a compound name.

example
Miles_Per_Hour
Entry_Value

rationale
When an identifier consists of more than one word, it is much easier to read if the words
are separated by underscores. Indeed, there is precedent in English in which compound
words are separated by a hyphen or a space. In addition to promoting readability of the
code, if underscores are used in names, a code formatter has more control over altering
capitalization. See Guideline 3.1.3.

4.2.2 Numbers
guideline
• Represent numbers in a consistent fashion.
• Represent literals in a radix appropriate to the problem.

33

Readability

• Use underscores to separate digits the same way commas or periods (or spaces for non-
decimal bases) would be used in normal text.

• When using scientific notation, make the E consistently either uppercase or lowercase.
• In an alternate base, represent the alphabetic characters in either all uppercase or all
lowercase.

instantiation
• Decimal and octal numbers are grouped by threes beginning on the left side of the radix
point and by fives beginning on the right side of the radix point.

• The E is always capitalized in scientific notation.
• Use uppercase for the alphabetic characters representing digits in bases above 10.
• Hexadecimal numbers are grouped by fours beginning on either side of the radix point.

example
type Maximum_Samples is range 1 .. 1_000_000;
type Legal_Hex_Address is range 16#0000# .. 16#FFFF#;
type Legal_Octal_Address is range 8#000_000# .. 8#777_777#;

Avogadro_Number : constant := 6.02216_9E+23;

To represent the number 1/3 as a constant, use:
One_Third : constant := 1.0 / 3.0;

Avoid this use:
One_Third_As_Decimal_Approximation : constant := 0.33333_33333_3333;

or:
One_Third_Base_3 : constant := 3#0.1#;

rationale
Consistent use of uppercase or lowercase aids scanning for numbers. Underscores serve to
group portions of numbers into familiar patterns. Consistency with common use in everyday
contexts is a large part of readability.

notes
If a rational fraction is represented in a base in which it has a terminating rather than
a repeating representation, as 3#0.1# does in the example above, it may have increased
accuracy upon conversion to the machine base. (This is wrong for named numbers as in
this example - they must be calculated exactly.)

34

Spelling

4.2.3 Capitalization
guideline
• Make reserved words and other elements of the program visually distinct from each other.

instantiation
• Use lowercase for all reserved words (when used as reserved words).
• Use mixed case for all other identifiers, a capital letter beginning every word separated
by underscores.

• Use uppercase for abbreviations and acronyms (see automation notes).

example
...

type Second_Of_Day is range 0 .. 86_400;
type Noon_Relative_Time is (Before_Noon, After_Noon, High_Noon);

subtype Morning is Second_Of_Day range 0 .. 86_400 / 2 - 1;
subtype Afternoon is Second_Of_Day range Morning'Last + 2 .. 86_400;

...

Current_Time := Second_Of_Day(Calendar.Seconds(Calendar.Clock));
if Current_Time in Morning then

Time_Of_Day := Before_Noon;
elsif Current_Time in Afternoon then

Time_Of_Day := After_Noon;
else

Time_Of_Day := High_Noon;
end if;

case Time_Of_Day is
when Before_Noon => Get_Ready_For_Lunch;
when High_Noon => Eat_Lunch;
when After_Noon => Get_To_Work;

end case;

...

rationale
Visually distinguishing reserved words allows you to focus on program structure alone, if
desired, and also aids scanning for particular identifiers.

The instantiation chosen here is meant to be more readable for the experienced Ada pro-
grammer, who does not need reserved words to leap off the page. Beginners to any language
often find that reserved words should be emphasized to help them find the control structures
more easily. Because of this, instructors in the classroom and books introducing the Ada
language may want to consider an alternative instantiation. The Ada Reference Manual
(1995) chose bold lowercase for all reserved words.

35

Readability

automation notes
Ada names are not case sensitive. Therefore, the names max_limit, MAX_LIMIT, and
Max_Limit denote the same object or entity. A good code formatter should be able to
automatically convert from one style to another as long as the words are delimited by
underscores.

As recommended in Guideline 3.1.4, abbreviations should be project-wide. An automated
tool should allow a project to specify those abbreviations and format them accordingly.

4.2.4 Abbreviations
guideline
• Do not use an abbreviation of a long word as an identifier where a shorter synonym exists.
• Use a consistent abbreviation strategy.
• Do not use ambiguous abbreviations.
• To justify its use, an abbreviation must save many characters over the full word.
• Use abbreviations that are well-accepted in the application domain.
• Maintain a list of accepted abbreviations, and use only abbreviations on that list.

example
Use:
Time_Of_Receipt

rather than:
Recd_Time or R_Time

But in an application that commonly deals with message formats that meet military stan-
dards, DOD_STD_MSG_FMT is an acceptable abbreviation for:
Department_Of_Defense_Standard_Message_Format.

rationale
Many abbreviations are ambiguous or unintelligible unless taken in context. As an example,
Temp could indicate either temporary or temperature. For this reason, you should choose
abbreviations carefully when you use them. The rationale in Guideline 8.1.2 provides a
more thorough discussion of how context should influence the use of abbreviations.

Because very long variable names can obscure the structure of the program, especially in
deeply nested (indented) control structures, it is a good idea to try to keep identifiers short
and meaningful. Use short unabbreviated names whenever possible. If there is no short
word that will serve as an identifier, then a well-known unambiguous abbreviation is the
next best choice, especially if it comes from a list of standard abbreviations used throughout
the project.

36

Naming Conventions

You can establish an abbreviated format for a fully qualified name using the renames clause.
This capability is useful when a very long, fully qualified name would otherwise occur many
times in a localized section of code (see Guideline 5.7.2).

A list of accepted abbreviations for a project provides a standard context for using each
abbreviation.

4.3 Naming Conventions
Choose names that clarify the object's or entity's intended use. Ada allows identifiers to
be any length as long as the identifier fits on a line with all characters being significant
(including underscores). Identifiers are the names used for variables, constants, program
units, and other entities within a program.

4.3.1 Names
guideline
• Choose names that are as self-documenting as possible.
• Use a short synonym instead of an abbreviation (see Guideline 3.1.4).
• Use names given by the application, but do not use obscure jargon.
• Avoid using the same name to declare different kinds of identifiers.

example
In a tree-walker, using the name Left instead of Left_Branch is sufficient to convey the
full meaning given the context. However, use Time_Of_Day instead of TOD.

Mathematical formulas are often given using single-letter names for variables. Continue this
convention for mathematical equations where they would recall the formula, for example:

A*(X**2) + B*X + C.

With the use of child packages, a poor choice of package, subunit, and identifier names can
lead to a visibility clash with subunits. See the Rationale (1995, §8.1) for a sample of the
resulting, rather obscure code.

rationale
A program that follows these guidelines can be more easily comprehended. Self-documenting
names require fewer explanatory comments. Empirical studies have shown that you can fur-
ther improve comprehension if your variable names are not excessively long (Schneiderman
1986, 7). The context and application can help greatly. The unit of measure for numeric
entities can be a source of subtype names.

You should try not to use the same name as an identifier for different declarations, such as
an object and a child package. Overusing an identifier in seemingly different name spaces
can, in fact, lead to visibility clashes if the enclosing program units are intended to work
together.

37

Readability

notes
See Guideline 8.1.2 for a discussion on how to use the application domain as a guideline for
selecting abbreviations.

4.3.2 Subtype Names
guideline
• Use singular, general nouns as subtype identifiers.
• Choose identifiers that describe one of the subtype's values.
• Consider using suffixes for subtype identifiers that define visible access types, visible
subranges, or visible array types.

• For private types, do not use identifier constructions (e.g., suffixes) that are unique to
subtype identifiers.

• Do not use the subtype names from predefined packages.

example
type Day is

(Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday);

type Day_Of_Month is range 0 .. 31;
type Month_Number is range 1 .. 12;
type Historical_Year is range -6_000 .. 2_500;

type Date is
record

Day : Day_Of_Month;
Month : Month_Number;
Year : Historical_Year;

end record;

In particular, Day should be used in preference to Days or Day_Type.

The identifier Historical_Year might appear to be specific, but it is actually general, with
the adjective historical describing the range constraint:
--
procedure Disk_Driver is

-- In this procedure, a number of important disk parameters are
-- linked.
Number_Of_Sectors : constant := 4;
Number_Of_Tracks : constant := 200;
Number_Of_Surfaces : constant := 18;
Sector_Capacity : constant := 4_096;

Track_Capacity : constant := Number_Of_Sectors * Sector_Capacity;
Surface_Capacity : constant := Number_Of_Tracks * Track_Capacity;
Disk_Capacity : constant := Number_Of_Surfaces * Surface_Capacity;

type Sector_Range is range 1 .. Number_Of_Sectors;
type Track_Range is range 1 .. Number_Of_Tracks;
type Surface_Range is range 1 .. Number_Of_Surfaces;

type Track_Map is array (Sector_Range) of ...;
type Surface_Map is array (Track_Range) of Track_Map;

38

Naming Conventions

type Disk_Map is array (Surface_Range) of Surface_Map;

begin -- Disk_Driver
...

end Disk_Driver;
--

The suffixes _Capacity, _Range, and _Map help define the purpose of the above subtypes
and avoid the search for synonyms for the sector, track, and surface abstractions. Without
the suffixes, you would need three different names per abstraction, one to describe each of
the concepts succinctly named in the suffix. This recommendation only applies to certain
visible subtypes. Private types, for example, should be given a good name that reflects the
abstraction being represented.

rationale
When this style and the suggested style for object identifiers are used, program code more
closely resembles English (see Guideline 3.2.3). Furthermore, this style is consistent with
the names of the language's predefined identifiers. They are not named Integers, Booleans
, Integer_Type, or Boolean_Type.

However, using the name of a subtype from the predefined packages is sure to confuse a
programmer when that subtype appears somewhere without a package qualification.

notes
This style guide tries to be consistent with the Ada Reference Manual (1995) in use of the
terms ”type” and ”subtype” name. In general, a ”type” refers to the abstract concept, as in
a type declaration, while the ”subtype” refers to the name given to that abstract concept
in an actual declaration. Thus, what was called a type name in Ada 83 (Ada Reference
Manual 1983) is now called a subtype name.

4.3.3 Object Names
guideline
• Use predicate clauses or adjectives for Boolean objects.
• Use singular, specific nouns as object identifiers.
• Choose identifiers that describe the object's value during execution.
• Use singular, general nouns as identifiers for record components.

example
Non-Boolean objects:
Today : Day;
Yesterday : Day;
Retirement_Date : Date;

Boolean objects:

39

Readability

User_Is_Available : Boolean; -- predicate clause
List_Is_Empty : Boolean; -- predicate clause
Empty : Boolean; -- adjective
Bright : Boolean; -- adjective

rationale
Using specific nouns for objects establishes a context for understanding the object's value,
which is one of the general values described by the subtype's name (see Guideline 3.2.2).
Object declarations become very English-like with this style. For example, the first decla-
ration above is read as ”Today is a Day.”

General nouns, rather than specific, are used for record components because a record ob-
ject's name will supply the context for understanding the component. Thus, the following
component is understood as ”the year of retirement”:
Retirement_Date.Year

Following conventions that relate object types and parts of speech makes code read more
like text. For example, because of the names chosen, the following code segment needs no
comments:
if List_Is_Empty then

Number_Of_Elements := 0;
else

Number_Of_Elements := Length_Of_List;
end if;

notes
If it is difficult to find a specific noun that describes an object's value during the entire
execution of a program, the object is probably serving multiple purposes. Multiple objects
should be used in such a case.

4.3.4 Naming of Tagged Types and Associated Packages
guideline
• Use a consistent naming convention for tagged types and associated packages.

instantiation
Naming conventions spark ”religious wars”; therefore, two different instantiations are pre-
sented. The first instantiation integrates the use of object-oriented features. Except for
two special cases, it applies the same naming conventions to declarations, independent of
whether they use an object-oriented feature:

• Name tagged types no differently than subtype names (see Guideline 3.2.2).
• Use the prefix Abstract_ for packages that export an abstraction for which you intend
to provide multiple implementations (see Guideline 9.2.4).

40

Naming Conventions

• Use the suffix _Mixin for packages that provide units of functionality that can be ”mixed
in” to core abstractions.

The second instantiation highlights the use of object-oriented features through special names
or suffixes:

• Name class packages after the object they represent, without a suffix (Rosen 1995).
• Name mixin packages after the facet they represent, appending the suffix _Facet (Rosen
1995).

• Name the main tagged type Instance (Rosen 1995).
• Follow the declaration of the specific type with a subtype named Class for the corre-
sponding class-wide type (Rosen 1995).

example
The following two-part example from the Rationale (1995, §§4.4.4 and 4.6.2) applies the
naming conventions of the first instantiation.

For the first part of this example, assume the type Set_Element was declared elsewhere:
package Abstract_Sets is

type Set is abstract tagged private;

-- empty set
function Empty return Set is abstract;

-- build set with 1 element
function Unit (Element: Set_Element) return Set is abstract;

-- union of two sets
function Union (Left, Right: Set) return Set is abstract;

-- intersection of two sets
function Intersection (Left, Right: Set) return Set is abstract;

-- remove an element from a set
procedure Take (From : in out Set;

Element : out set_Element) is abstract;

Element_Too_Large : exception;
private

type Set is abstract tagged null record;
end Abstract_Sets;

with Abstract_Sets;
package Bit_Vector_Sets is -- one implementation of set abstraction

type Bit_Set is new Abstract_Sets.Set with private;
...

private
Bit_Set_Size : constant := 64;
type Bit_Vector is ...
type Bit_Set is new Abstract_Sets.Set with

record
Data : Bit_Vector;

end record;
end Bit_Vector_Sets;

with Abstract_Sets;
package Sparse_Sets -- alternate implementation of set abstraction

41

Readability

type Sparse_Set is new Abstract_Sets.Set with private;
...

private
...

end Bit_Vector_Sets;

The second part of this example applies the naming convention to mixin packages that
support a windowing system:
-- assume you have type Basic_Window is tagged limited private;

generic
type Some_Window is abstract new Basic_Window with private;

package Label_Mixin is
type Window_With_Label is abstract new Some_Window with private;
...

private
...

end Label_Mixin;

generic
type Some_Window is abstract new Basic_Window with private;

package Border_Mixin is
type Window_With_Label is abstract new Some_Window with private;
...

private
...

end Border_Mixin;

The following example applies the naming conventions of the second instantiation, as dis-
cussed in Rosen (1995):
package Shape is

subtype Side_Count is range 0 .. 100;
type Instance (Sides: Side_Count) is tagged private;
subtype Class is Instance'Class;
. . .
-- operations on Shape.Instance

private
. . .

end Shape;

with Shape; use Shape;
package Line is

type Instance is new Shape.Instance with private;
subtype Class is Instance'Class;
. . .
-- Overridden or new operations

private
. . .

end Line;

with Shape; use Shape;
generic

type Origin is new Shape.Instance;
package With_Color_Facet is

type Instance is new Origin with private;
subtype Class is Instance'Class;
-- operations for colored shapes

private
. . .

end With_Color_Facet;

42

Naming Conventions

with Line; use Line;
with With_Color_Facet;
package Colored_Line is new With_Color_Facet (Line.Instance);

Sample declarations might look like:
Red_Line : Colored_Line.Instance;

procedure Draw (What : Shape.Instance);

The above scheme works whether you use full names or a use clause. As long as you use
the same name for all the specific types (i.e., type Instance) and class-wide types, the
unqualified names will always hide one another. Thus, the compiler will insist you use full
name qualification to resolve the ambiguity introduced by the use clause (Rosen 1995).

rationale
You want to use a naming scheme that is consistent and readable and conveys the intent
of the abstraction. Ideally, the naming scheme should be uniform in how it handles the
different ways in which tagged types are used to create classes. If the naming convention
is too rigid, however, you will write code fragments that appear stilted from a readability
point of view. By using a similar naming convention for type extension through derivation
and through generic mixin (see also Guideline 9.5.1), you achieve readable declarations of
objects and procedures.

notes
A naming convention for classes draws a hard line between object-oriented abstractions and
other kinds of abstractions. Given that engineers have been defining abstract data types in
Ada 83 (Ada Reference Manual 1983) for over 10 years, you may not want to change the
naming convention just for the sake of using type extension with a type. You must consider
how important it is to call out uses of inheritance in the overall use of abstractions in your
program. If you prefer to emphasize abstraction, in general, over the mechanism used to
implement the abstraction (i.e., inheritance, type-extension, and polymorphism), you may
not want to impose such a stringent naming convention. You do not hamper quality by
favoring a smoother transition in naming conventions from abstractions developed without
inheritance to those developed with inheritance.

If you choose a naming convention that highlights the use of object-oriented features and
later decide to change the declaration to one that does not use an object-oriented feature,
the change may be expensive. You must naturally change all occurrences of the names and
must be careful not to introduce errors as you update the names. If you choose a naming
convention that prohibits the use of suffixes or prefixes to characterize the declaration, you
lose the opportunity to convey the intended usage of the declared item.

43

Readability

4.3.5 Program Unit Names
guideline
• Use action verbs for procedures and entries.
• Use predicate clauses for Boolean functions.
• Use nouns for non-Boolean functions.
• Give packages names that imply a higher level of organization than subprograms. Gen-
erally, these are noun phrases that describe the abstraction provided.

• Give tasks names that imply an active entity.
• Use nouns descriptive of the data being protected for protected units.
• Consider naming generic subprograms as if they were nongeneric subprograms.
• Consider naming generic packages as if they were nongeneric packages.
• Make the generic names more general than the instantiated names.

example
The following are sample names for elements that compose an Ada program:

Sample procedure names:
procedure Get_Next_Token -- get is a transitive verb
procedure Create -- create is a transitive verb

Sample function names for Boolean-valued functions:
function Is_Last_Item -- predicate clause
function Is_Empty -- predicate clause

Sample function names for non-Boolean-valued functions:
function Successor -- common noun
function Length -- attribute
function Top -- component

Sample package names:
package Terminals is -- common noun
package Text_Routines is -- common noun

Sample protected objects:
protected Current_Location is -- data being protected
protected type Guardian is -- noun implying protection

Sample task names:
task Terminal_Resource_Manager is -- common noun that shows action

The following sample piece of code shows the clarity that results from using the parts-of-
speech naming conventions:

44

Naming Conventions

Get_Next_Token(Current_Token);

case Current_Token is
when Identifier => Process_Identifier;
when Numeric => Process_Numeric;

end case; -- Current_Token

if Is_Empty(Current_List) then
Number_Of_Elements := 0;

else
Number_Of_Elements := Length(Current_List);

end if;

When packages and their subprograms are named together, the resulting code is very de-
scriptive:
if Stack.Is_Empty(Current_List) then

Current_Token := Stack.Top(Current_List);
end if;

rationale
Using these naming conventions creates understandable code that reads much like natural
language. When verbs are used for actions, such as subprograms, and nouns are used for
objects, such as the data that the subprogram manipulates, code is easier to read and
understand. This models a medium of communication already familiar to a reader. Where
the pieces of a program model a real-life situation, using these conventions reduces the
number of translation steps involved in reading and understanding the program. In a
sense, your choice of names reflects the level of abstraction from computer hardware toward
application requirements.

See also Guideline 3.2.4 for the use of special-purpose suffixes in packages associated with
tagged types.

notes
There are some conflicting conventions in current use for task entries. Some programmers
and designers advocate naming task entries with the same conventions used for subprograms
to blur the fact that a task is involved. Their reasoning is that if the task is reimplemented
as a package, or vice versa, the names need not change. Others prefer to make the fact of
a task entry as explicit as possible to ensure that the existence of a task with its presumed
overhead is recognizable. Project-specific priorities may be useful in choosing between these
conventions.

4.3.6 Constants and Named Numbers
guideline
• Use symbolic values instead of literals where the symbolic value improves readability.
• Use symbolic values instead of literals if the value occurs at more than one place and
might need to be changed.

45

Readability

• Use the predefined constants Ada.Numerics.Pi and Ada.Numerics.e for the mathematical
constants Pi and e.

• Use constants instead of variables for constant values.
• Use a constant when the value is specific to a type or when the value must be static.
• Use named numbers instead of constants, whenever possible.
• Use named numbers to replace numeric literals whose type or context is truly universal.
• Use constants for objects whose values cannot change after elaboration (United Technolo-
gies 1987).

• Show relationships between symbolic values by defining them with static expressions.
• Use linearly independent sets of literals.
• Use attributes like 'First and 'Last instead of literals, wherever possible.

example
3.14159_26535_89793 -- literal
Max_Entries : constant Integer := 400; -- constant
Avogadros_Number : constant := 6.022137 * 10**23; -- named number
Avogadros_Number / 2 -- static expression
Avogadros_Number -- symbolic value

Declaring Pi as a named number (assuming a with clause for the predefined package
Ada.Numerics in the Ada Reference Manual 1995, §A.5 1 [Annotated2] allows it to be refer-
enced symbolically in the assignment statement below:
Area := Pi * Radius**2; -- if radius is known.

instead of:
Area := 3.14159 * Radius**2; -- Needs explanatory comment

Also, Ada.Characters.Latin_1.Bel is more expressive than Character'Val(8#007#).

Clarity of constant and named number declarations can be improved by using other constant
and named numbers. For example:
Bytes_Per_Page : constant := 512;
Pages_Per_Buffer : constant := 10;
Buffer_Size : constant := Pages_Per_Buffer * Bytes_Per_Page;

is more self-explanatory and easier to maintain than:
Buffer_Size : constant := 5_120; -- ten pages

The following literals should be constants:
if New_Character = '$' then -- "constant" that may change
...
if Current_Column = 7 then -- "constant" that may change

1 http://www.adaic.com/standards/95lrm/html/RM-A-5.html

46

http://www.adaic.com/standards/95lrm/html/RM-A-5.html

Naming Conventions

rationale
Using identifiers instead of literals makes the purpose of expressions clear, reducing the need
for comments. Constant declarations consisting of expressions of numeric literals are safer
because they do not need to be computed by hand. They are also more enlightening than a
single numeric literal because there is more opportunity for embedding explanatory names.
Clarity of constant declarations can be improved further by using other related constants in
static expressions defining new constants. This is not less efficient because static expressions
of named numbers are computed at compile time.

A constant has a type. A named number can only be a universal type: universal_integer
or universal_real. Strong typing is enforced for constants but not for named numbers or
literals. Named numbers allow compilers to generate more efficient code than for constants
and to perform more complete error checking at compile time. If the literal contains a large
number of digits (as Pi in the example above), the use of an identifier reduces keystroke
errors. If keystroke errors occur, they are easier to locate either by inspection or at compile
time.

Independence of literals means that the few literals that are used do not depend on one
another and that any relationship between constant or named values is shown in the static
expressions. Linear independence of literal values gives the property that if one literal value
changes, all of the named numbers of values dependent on that literal are automatically
changed.

See Guideline 4.1.4 for additional guidelines on choosing a parameterless function versus a
constant.

notes
There are situations where a literal is a better choice than a name. For this to be the case,
the following conditions have to be fulfilled:

• The literal has to be self-explanatory in the respective context, such that replacing the
literal by a symbolic value would not improve the readability.

• The value is either unchangeable or only occurs at one single place in the code, such that
replacing the literal by a symbolic value would not improve the maintainability.

For example, the literals in the following well known relationship are both self-explanatory
and unchangeable:

Fahrenheit := 32.0 + (9.0 * Celsius) / 5.0;

As a second example, dividing by the literal 2 is self-explanatory in a binary search algorithm
context. And, since the value is also unchangeably related with the algorithm, it also does
not matter if the literal occurs at more than one place in the code (for example due to loop
unrolling). Therefore, the use of a symbolic value like the following would neither improve
readability nor maintainability:

Binary_Search_Divisor : constant := 2;

47

Readability

4.3.7 Exceptions
guideline
• Use a name that indicates the kind of problem the exception represents.

example
Invalid_Name: exception;
Stack_Overflow: exception;

rationale
Naming exceptions according to the kind of problem they are detecting enhances the read-
ability of the code. You should name your exceptions as precisely as you can so that the
maintainer of the code understands why the exception might be raised. A well-named
exception should be meaningful to the clients of the package declaring the exception.

4.3.8 Constructors
guideline
• Include a prefix like New, Make, or Create in naming constructors (in this sense, operations
to create and/or initialize an object).

• Use names indicative of their content for child packages containing constructors.

instantiation
• Name a child package containing constructors <whatever>.Constructor.

example
function Make_Square (Center : Cartesian_Coordinates;

Side : Positive)
return Square;

rationale
Including a word like New, Make, or Create in a constructor name makes its purpose clear.
You may want to restrict the use of the prefix New to constructors that return an access
value because the prefix suggests the internal use of an allocator.

Putting all constructors in a child package, even when they return access values, is a useful
organizational principle.

For information regarding the use of Ada constructors, refer to Guideline 9.3.3.

4.4 Comments
Comments in source text are a controversial issue. There are arguments both for and
against the view that comments enhance readability. In practice, the biggest problem

48

Comments

with comments is that people often fail to update them when the associated source text
is changed, thereby making the commentary misleading. Commentary should be reserved
for expressing needed information that cannot be expressed in code and highlighting cases
where there are overriding reasons to violate one of the guidelines. If possible, source text
should use self-explanatory names for objects and program units, and it should use simple,
understandable program structures so that little additional commentary is needed. The
extra effort in selecting (and entering) appropriate names and the extra thought needed to
design clean and understandable program structures are fully justified.

Use comments to state the intent of the code. Comments that provide an overview of the
code help the maintenance programmer see the forest for the trees. The code itself is the
detailed ”how” and should not be paraphrased in the comments.

Comments should be minimized. They should provide needed information that cannot be
expressed in the Ada language, emphasize the structure of code, and draw attention to
deliberate and necessary violations of the guidelines. Comments are present either to draw
attention to the real issue being exemplified or to compensate for incompleteness in the
sample program.

Maintenance programmers need to know the causal interaction of noncontiguous pieces of
code to get a global, more or less complete sense of the program. They typically acquire
this kind of information from mental simulation of parts of the code. Comments should be
sufficient enough to support this process (Soloway et al. 1986).

This section presents general guidelines about how to write good comments. It then defines
several different classes of comments with guidelines for the use of each. The classes are file
headers, program unit specification headers, program unit body headers, data comments,
statement comments, and marker comments.

4.4.1 General Comments
guideline
• Make the code as clear as possible to reduce the need for comments.
• Never repeat information in a comment that is readily available in the code.
• Where a comment is required, make it concise and complete.
• Use proper grammar and spelling in comments.
• Make comments visually distinct from the code.
• Structure comments in header so that information can be automatically extracted by a
tool.

rationale
The structure and function of well-written code is clear without comments. Obscured or
badly structured code is hard to understand, maintain, or reuse regardless of comments.
Bad code should be improved, not explained. Reading the code itself is the only way to
be absolutely positive about what the code does; therefore, the code should be made as
readable as possible.

49

Readability

Using comments to duplicate information in the code is a bad idea for several reasons. First,
it is unnecessary work that decreases productivity. Second, it is very difficult to correctly
maintain the duplication as the code is modified. When changes are made to existing code,
it is compiled and tested to make sure that it is once again correct. However, there is
no automatic mechanism to make sure that the comments are correctly updated to reflect
the changes. Very often, the duplicate information in a comment becomes obsolete at the
first code change and remains so through the life of the software. Third, when comments
about an entire system are written from the limited point of view of the author of a single
subsystem, the comments are often incorrect from the start.

Comments are necessary to reveal information difficult or impossible to obtain from the
code. Subsequent chapters of this book contain examples of such comments. Completely
and concisely present the required information.

The purpose of comments is to help readers understand the code. Misspelled, ungrammati-
cal, ambiguous, or incomplete comments defeat this purpose. If a comment is worth adding,
it is worth adding correctly in order to increase its usefulness.

Making comments visually distinct from the code by indenting them, grouping them to-
gether into headers, or highlighting them with dashed lines is useful because it makes the
code easier to read. Subsequent chapters of this book elaborate on this point.

automation notes
The guideline about storing redundant information in comments applies only to manually
generated comments. There are tools that automatically maintain information about the
code (e.g., calling units, called units, cross-reference information, revision histories, etc.),
storing it in comments in the same file as the code. Other tools read comments but do not
update them, using the information from the comments to automatically generate detailed
design documents and other reports.

The use of such tools is encouraged and may require that you structure your header com-
ments so they can be automatically extracted and/or updated. Beware that tools that
modify the comments in a file are only useful if they are executed frequently enough. Auto-
matically generated obsolete information is even more dangerous than manually generated
obsolete information because it is more trusted by the reader.

Revision histories are maintained much more accurately and completely by configuration
management tools. With no tool support, it is very common for an engineer to make a
change and forget to update the revision history. If your configuration management tool is
capable of maintaining revision histories as comments in the source file, then take advantage
of that capability, regardless of any compromise you might have to make about the format
or location of the revision history. It is better to have a complete revision history appended
to the end of the file than to have a partial one formatted nicely and embedded in the file
header.

50

Comments

4.4.2 File Headers
guideline
• Put a file header on each source file.
• Place ownership, responsibility, and history information for the file in the file header.

instantiation
• Put a copyright notice in the file header.
• Put the author's name and department in the file header.
• Put a revision history in the file header, including a summary of each change, the date,
and the name of the person making the change.

example
--
-- Copyright (c) 1991, Software Productivity Consortium, Inc.
-- All rights reserved.
--
-- Author: J. Smith
-- Department:System Software Department
--
-- Revision History:
-- 7/9/91 J. Smith
-- - Added function Size_Of to support queries of node sizes.
-- - Fixed bug in Set_Size which caused overlap of large nodes.
-- 7/1/91 M. Jones
-- - Optimized clipping algorithm for speed.
-- 6/25/91 J. Smith
-- - Original version.
--

rationale
Ownership information should be present in each file if you want to be sure to protect your
rights to the software. Furthermore, for high visibility, it should be the first thing in the
file.

Responsibility and revision history information should be present in each file for the sake
of future maintainers; this is the header information most trusted by maintainers because
it accumulates. It does not evolve. There is no need to ever go back and modify the
author's name or the revision history of a file. As the code evolves, the revision history
should be updated to reflect each change. At worst, it will be incomplete; it should rarely
be wrong. Also, the number and frequency of changes and the number of different people
who made the changes over the history of a unit can be good indicators of the integrity of
the implementation with respect to the design.

Information about how to find the original author should be included in the file header,
in addition to the author's name, to make it easier for maintainers to find the author in
case questions arise. However, detailed information like phone numbers, mail stops, office
numbers, and computer account user names are too volatile to be very useful. It is better
to record the department for which the author was working when the code was written.
This information is still useful if the author moves offices, changes departments, or even

51

Readability

leaves the company because the department is likely to retain responsibility for the original
version of the code.

notes
With modern configuration management systems, explicitly capturing version history as
header comments may be superfluous. The configuration management tool maintains a
more reliable and consistent (from a content point of view) change history. Some systems
can re-create earlier versions of a unit.

4.4.3 Program Unit Specification Headers
guideline
• Put a header on the specification of each program unit.
• Place information required by the user of the program unit in the specification header.
• Do not repeat information (except unit name) in the specification header that is present
in the specification.

• Explain what the unit does, not how or why it does it.
• Describe the complete interface to the program unit, including any exceptions it can raise
and any global effects it can have.

• Do not include information about how the unit fits into the enclosing software system.
• Describe the performance (time and space) characteristics of the unit.

instantiation
• Put the name of the program unit in the header.
• Briefly explain the purpose of the program unit.
• For packages, describe the effects of the visible subprograms on each other and how they
should be used together.

• List all exceptions that can be raised by the unit.
• List all global effects of the unit.
• List preconditions and postconditions of the unit.
• List hidden tasks activated by the unit.
• Do not list the names of parameters of a subprogram.
• Do not list the names of package subprograms just to list them.
• Do not list the names of all other units used by the unit.
• Do not list the names of all other units that use the unit.

example
--
-- AUTOLAYOUT
--
-- Purpose:
-- This package computes positional information for nodes and arcs
-- of a directed graph. It encapsulates a layout algorithm which is
-- designed to minimize the number of crossing arcs and to emphasize
-- the primary direction of arc flow through the graph.
--

52

Comments

-- Effects:
-- - The expected usage is:
-- 1. Call Define for each node and arc to define the graph.
-- 2. Call Layout to assign positions to all nodes and arcs.
-- 3. Call Position_Of for each node and arc to determine the
-- assigned coordinate positions.
-- - Layout can be called multiple times, and recomputes the
-- positions of all currently defined nodes and arcs each time.
-- - Once a node or arc has been defined, it remains defined until
-- Clear is called to delete all nodes and arcs.
--
-- Performance:
-- This package has been optimized for time, in preference to space.
-- Layout times are on the order of N*log(N) where N is the number
-- of nodes, but memory space is used inefficiently.
--

package Autolayout is

...

-- Define
--
-- Purpose:
-- This procedure defines one node of the current graph.
-- Exceptions:
-- Node_Already_Defined

procedure Define

(New_Node : in Node);

-- Layout
--
-- Purpose:
-- This procedure assigns coordinate positions to all defined
-- nodes and arcs.
-- Exceptions:
-- None.

procedure Layout;

-- Position_Of
--
-- Purpose:
-- This function returns the coordinate position of the
-- specified node. The default position (0,0) is returned if no
-- position has been assigned yet.
-- Exceptions:
-- Node_Not_Defined

function Position_Of (Current : in Node)

return Position;

...

end Autolayout;

rationale
The purpose of a header comment on the specification of a program unit is to help the user
understand how to use the program unit. From reading the program unit specification and
header, a user should know everything necessary to use the unit. It should not be necessary

53

Readability

to read the body of the program unit. Therefore, there should be a header comment on
each program unit specification, and each header should contain all usage information not
expressed in the specification itself. Such information includes the units' effects on each
other and on shared resources, exceptions raised, and time/space characteristics. None of
this information can be determined from the Ada specification of the program unit.

When you duplicate information in the header that can be readily obtained from the spec-
ification, the information tends to become incorrect during maintenance. For example, do
not make a point of listing all parameter names, modes, or subtypes when describing a pro-
cedure. This information is already available from the procedure specification. Similarly,
do not list all subprograms of a package in the header unless this is necessary to make some
important statement about the subprograms.

Do not include information in the header that the user of the program unit does not need.
In particular, do not include information about how a program unit performs its function or
why a particular algorithm was used. This information should be hidden in the body of the
program unit to preserve the abstraction defined by the unit. If the user knows such details
and makes decisions based on that information, the code may suffer when that information
is later changed.

When describing the purpose of the unit, avoid referring to other parts of the enclosing
software system. It is better to say ”this unit does…” than to say ”this unit is called by
Xyz to do….” The unit should be written in such a way that it does not know or care
which unit is calling it. This makes the unit much more general purpose and reusable. In
addition, information about other units is likely to become obsolete and incorrect during
maintenance.

Include information about the performance (time and space) characteristics of the unit.
Much of this information is not present in the Ada specification, but it is required by the
user. To integrate the unit into a system, the user needs to understand the resource usage
(CPU, memory, etc.) of the unit. It is especially important to note that when a subprogram
call causes activation of a task hidden in a package body, the task may continue to consume
resources after the subroutine ends.

notes
Some projects have deferred most of the commentary to the end rather than at the beginning
of the program unit. Their rationale is that program units are written once and read many
times and that long header comments make the start of the specification difficult to find.

exceptions
Where a group of program units are closely related or simple to understand, it is acceptable
to use a single header for the entire group of program units. For example, it makes sense to
use a single header to describe the behavior of Max and Min functions; Sin, Cos, and Tan
functions; or a group of functions to query related attributes of an object encapsulated in a
package. This is especially true when each function in the set is capable of raising the same
exceptions.

54

Comments

4.4.4 Program Unit Body Headers
guideline
• Place information required by the maintainer of the program unit in the body of the
header

• Explain how and why the unit performs its function, not what the unit does.
• Do not repeat information (except unit name) in the header that is readily apparent from
reading the code.

• Do not repeat information (except unit name) in the body header that is available in the
specification header.

instantiation
• Put the name of the program unit in the header.
• Record portability issues in the header.
• Summarize complex algorithms in the header.
• Record reasons for significant or controversial implementation decisions.
• Record discarded implementation alternatives, along with the reason for discarding them.
• Record anticipated changes in the header, especially if some work has already been done
to the code to make the changes easy to accomplish.

example
--
-- Autolayout
--
-- Implementation Notes:
-- - This package uses a heuristic algorithm to minimize the number
-- of arc crossings. It does not always achieve the true minimum
-- number which could theoretically be reached. However it does a
-- nearly perfect job in relatively little time. For details about
-- the algorithm, see ...
--
-- Portability Issues:
-- - The native math package Math_Lib is used for computations of
-- coordinate positions.
-- - 32-bit integers are required.
-- - No operating system specific routines are called.
--
-- Anticipated Changes:
-- - Coordinate_Type below could be changed from integer to float
-- with little effort. Care has been taken to not depend on the
-- specific characteristics of integer arithmetic.
--
package body Autolayout is

...

-- Define
--
-- Implementation Notes:
-- - This routine stores a node in the general purpose Graph data
-- structure, not the Fast_Graph structure because ...

procedure Define

(New_Node : in Node) is

55

Readability

begin
...

end Define;

-- Layout
--
-- Implementation Notes:
-- - This routine copies the Graph data structure (optimized for
-- fast random access) into the Fast_Graph data structure
-- (optimized for fast sequential iteration), then performs the
-- layout, and copies the data back to the Graph structure. This
-- technique was introduced as an optimization when the algorithm
-- was found to be too slow, and it produced an order of
-- magnitude improvement.

procedure Layout is
begin

...
end Layout;

-- Position_Of

function Position_Of (Current : in Node)

return Position is
begin

...
end Position_Of;

...

end Autolayout;

rationale
The purpose of a header comment on the body of a program unit is to help the maintainer
of the program unit to understand the implementation of the unit, including tradeoffs
among different techniques. Be sure to document all decisions made during implementation
to prevent the maintainer from making the same mistakes you made. One of the most
valuable comments to a maintainer is a clear description of why a change being considered
will not work.

The header is also a good place to record portability concerns. The maintainer may have
to port the software to a different environment and will benefit from a list of nonportable
features. Furthermore, the act of collecting and recording portability issues focuses attention
on these issues and may result in more portable code from the start.

Summarize complex algorithms in the header if the code is difficult to read or understand
without such a summary, but do not merely paraphrase the code. Such duplication is
unnecessary and hard to maintain. Similarly, do not repeat the information from the header
of the program unit specification.

notes
It is often the case that a program unit is self-explanatory so that it does not require a
body header to explain how it is implemented or why. In such a case, omit the header
entirely, as in the case with Position_Of above. Be sure, however, that the header you omit

56

Comments

truly contains no information. For example, consider the difference between the two header
sections:
-- Implementation Notes: None.

and:
-- NonPortable Features: None.

The first is a message from the author to the maintainer saying ”I can't think of anything
else to tell you,” while the second may mean ”I guarantee that this unit is entirely portable.”

4.4.5 Data Comments
guideline
• Comment on all data types, objects, and exceptions unless their names are self-
explanatory.

• Include information on the semantic structure of complex, pointer-based data structures.
• Include information about relationships that are maintained between data objects.
• Omit comments that merely repeat the information in the name.
• Include information on redispatching for tagged types in cases where you intend the
specializations (i.e., derived types) to override these redispatching operations.

example
Objects can be grouped by purpose and commented as:
...

-- Current position of the cursor in the currently selected text
-- buffer, and the most recent position explicitly marked by the
-- user.
-- Note: It is necessary to maintain both current and desired
-- column positions because the cursor cannot always be
-- displayed in the desired position when moving between
-- lines of different lengths.

Desired_Column : Column_Counter;
Current_Column : Column_Counter;
Current_Row : Row_Counter;
Marked_Column : Column_Counter;
Marked_Row : Row_Counter;

The conditions under which an exception is raised should be commented:

-- Exceptions

Node_Already_Defined : exception; -- Raised when an attempt is made

--| to define a node with an
--| identifier which already
--| defines a node.

Node_Not_Defined : exception; -- Raised when a reference is
--| made to a node which has
--| not been defined.

57

Readability

Here is a more complex example, involving multiple record and access types that are used
to form a complex data structure:

-- These data structures are used to store the graph during the
-- layout process. The overall organization is a sorted list of
-- "ranks," each containing a sorted list of nodes, each containing
-- a list of incoming arcs and a list of outgoing arcs.
-- The lists are doubly linked to support forward and backward
-- passes for sorting. Arc lists do not need to be doubly linked
-- because order of arcs is irrelevant.
--
-- The nodes and arcs are doubly linked to each other to support
-- efficient lookup of all arcs to/from a node, as well as efficient
-- lookup of the source/target node of an arc.

type Arc;
type Arc_Pointer is access Arc;

type Node;
type Node_Pointer is access Node;

type Node is
record

Id : Node_Pointer;-- Unique node ID supplied by the user.
Arc_In : Arc_Pointer;
Arc_Out : Arc_Pointer;
Next : Node_Pointer;
Previous : Node_Pointer;

end record;

type Arc is
record

ID : Arc_ID; -- Unique arc ID supplied by the user.
Source : Node_Pointer;
Target : Node_Pointer;
Next : Arc_Pointer;

end record;

type Rank;
type Rank_Pointer is access Rank;

type Rank is
record

Number : Level_ID; -- Computed ordinal number of the rank.
First_Node : Node_Pointer;
Last_Node : Node_Pointer;
Next : Rank_Pointer;
Previous : Rank_Pointer;

end record;

First_Rank : Rank_Pointer;
Last_Rank : Rank_Pointer;

rationale
It is very useful to add comments explaining the purpose, structure, and semantics of
the data structures. Many maintainers look at the data structures first when trying to
understand the implementation of a unit. Understanding the data that can be stored,
along with the relationships between the different data items and the flow of data through
the unit, is an important first step in understanding the details of the unit.

58

Comments

In the first example above, the names Current_Column and Current_Row are relatively
self-explanatory. The name Desired_Column is also well chosen, but it leaves the reader
wondering what the relationship is between the current column and the desired column.
The comment explains the reason for having both.

Another advantage of commenting on the data declarations is that the single set of comments
on a declaration can replace multiple sets of comments that might otherwise be needed at
various places in the code where the data is manipulated. In the first example above,
the comment briefly expands on the meaning of ”current” and ”marked.” It states that
the ”current” position is the location of the cursor, the ”current” position is in the current
buffer, and the ”marked” position was marked by the user. This comment, along with the
mnemonic names of the variables, greatly reduces the need for comments at individual
statements throughout the code.

It is important to document the full meaning of exceptions and under what conditions they
can be raised, as shown in the second example above, especially when the exceptions are
declared in a package specification. The reader has no other way to find out the exact
meaning of the exception (without reading the code in the package body).

Grouping all the exceptions together, as shown in the second example, can provide the
reader with the effect of a ”glossary” of special conditions. This is useful when many dif-
ferent subprograms in the package can raise the same exceptions. For a package in which
each exception can be raised by only one subprogram, it may be better to group related
subprograms and exceptions together.

When commenting exceptions, it is better to describe the exception's meaning in general
terms than to list all the subprograms that can cause the exception to be raised; such a
list is harder to maintain. When a new routine is added, it is likely that these lists will
not be updated. Also, this information is already present in the comments describing the
subprograms, where all exceptions that can be raised by the subprogram should be listed.
Lists of exceptions by subprogram are more useful and easier to maintain than lists of
subprograms by exception.

In the third example, the names of the record fields are short and mnemonic, but they
are not completely self-explanatory. This is often the case with complex data structures
involving access types. There is no way to choose the record and field names so that they
completely explain the overall organization of the records and pointers into a nested set of
sorted lists. The comments shown are useful in this case. Without them, the reader would
not know which lists are sorted, which lists are doubly linked, or why. The comments express
the intent of the author with respect to this complex data structure. The maintainer still
has to read the code if he wants to be sure that the double links are all properly maintained.
Keeping this in mind when reading the code makes it much easier for the maintainer to find
a bug where one pointer is updated and the opposite one is not.

See Guideline 9.3.1 for the rationale for documenting the use of redispatching operations.
(Redispatching means converting an argument of one primitive operation to a class-wide
type and making a dispatching call to another primitive operation.) The rationale in Guide-
line 9.3.1 discusses whether such documentation should be in the specification or the body.

59

Readability

4.4.6 Statement Comments
guideline
• Minimize comments embedded among statements.
• Use comments only to explain parts of the code that are not obvious.
• Comment intentional omissions from the code.
• Do not use comments to paraphrase the code.
• Do not use comments to explain remote pieces of code, such as subprograms called by
the current unit.

• Where comments are necessary, make them visually distinct from the code.

example
The following is an example of very poorly commented code:
...

-- Loop through all the strings in the array Strings, converting
-- them to integers by calling Convert_To_Integer on each one,
-- accumulating the sum of all the values in Sum, and counting them
-- in Count. Then divide Sum by Count to get the average and store
-- it in Average. Also, record the maximum number in the global
-- variable Max_Number.

for I in Strings'Range loop
-- Convert each string to an integer value by looping through
-- the characters which are digits, until a nondigit is found,
-- taking the ordinal value of each, subtracting the ordinal value
-- of '0', and multiplying by 10 if another digit follows. Store
-- the result in Number.
Number := Convert_To_Integer(Strings(I));
-- Accumulate the sum of the numbers in Total.
Sum := Sum + Number;
-- Count the numbers.
Count := Count + 1;

-- Decide whether this number is more than the current maximum.
if Number > Max_Number then

-- Update the global variable Max_Number.
Max_Number := Number;

end if;

end loop;
-- Compute the average.
Average := Sum / Count;

The following is improved by not repeating things in the comments that are obvious from
the code, not describing the details of what goes in inside of Convert_To_Integer, deleting
an erroneous comment (the one on the statement that accumulates the sum), and making
the few remaining comments more visually distinct from the code.
Sum_Integers_Converted_From_Strings:

for I in Strings'Range loop
Number := Convert_To_Integer(Strings(I));
Sum := Sum + Number;
Count := Count + 1;

-- The global Max_Number is computed here for efficiency.
if Number > Max_Number then

60

Comments

Max_Number := Number;
end if;

end loop Sum_Integers_Converted_From_Strings;

Average := Sum / Count;

rationale
The improvements shown in the example are not improvements merely by reducing the total
number of comments; they are improvements by reducing the number of useless comments.

Comments that paraphrase or explain obvious aspects of the code have no value. They are
a waste of effort for the author to write and the maintainer to update. Therefore, they often
end up becoming incorrect. Such comments also clutter the code, hiding the few important
comments.

Comments describing what goes on inside another unit violate the principle of information
hiding. The details about Convert_To_Integer (deleted above) are irrelevant to the calling
unit, and they are better left hidden in case the algorithm ever changes. Examples explaining
what goes on elsewhere in the code are very difficult to maintain and almost always become
incorrect at the first code modification.

The advantage of making comments visually distinct from the code is that it makes the code
easier to scan, and the few important comments stand out better. Highlighting unusual or
special code features indicates that they are intentional. This assists maintainers by focusing
attention on code sections that are likely to cause problems during maintenance or when
porting the program to another implementation.

Comments should be used to document code that is nonportable, implementation-
dependent, environment-dependent, or tricky in any way. They notify the reader that
something unusual was put there for a reason. A beneficial comment would be one ex-
plaining a work around for a compiler bug. If you use a lower level (not ”ideal” in the
software engineering sense) solution, comment on it. Information included in the comments
should state why you used that particular construct. Also include documentation on the
failed attempts, for example, using a higher level structure. This kind of comment is useful
to maintainers for historical purposes. You show the reader that a significant amount of
thought went into the choice of a construct.

Finally, comments should be used to explain what is not present in the code as well as what
is present. If you make a conscious decision to not perform some action, like deallocating a
data structure with which you appear to be finished, be sure to add a comment explaining
why not. Otherwise, a maintainer may notice the apparent omission and ”correct” it later,
thus introducing an error.

See also Guideline 9.3.1 for a discussion of what kind of documentation you should provide
regarding tagged types and redispatching.

61

Readability

notes
Further improvements can be made on the above example by declaring the variables Count
and Sum in a local block so that their scope is limited and their initializations occur near
their usage, e.g., by naming the block Compute_Average or by moving the code into a
function called Average_Of. The computation of Max_Number can also be separated from
the computation of Average. However, those changes are the subject of other guidelines;
this example is only intended to illustrate the proper use of comments.

4.4.7 Marker Comments
guideline
• Use pagination markers to mark program unit boundaries (see Guideline 2.1.7).
• Repeat the unit name in a comment to mark the begin of a package body, subprogram
body, task body, or block if the begin is preceded by declarations.

• For long or heavily nested if and case statements, mark the end of the statement with
a comment summarizing the condition governing the statement.

• For long or heavily nested if statements, mark the else part with a comment summa-
rizing the conditions governing this portion of the statement.

example
if A_Found then

...
elsif B_Found then

...

else -- A and B were both not found
...

if Count = Max then
...

end if;

...
end if; -- A_Found

--
package body Abstract_Strings is

...

procedure Concatenate (...) is
begin

...
end Concatenate;

...
begin -- Abstract_Strings

...
end Abstract_Strings;
--

62

Using Types

rationale
Marker comments emphasize the structure of code and make it easier to scan. They can be
lines that separate sections of code or descriptive tags for a construct. They help the reader
resolve questions about the current position in the code. This is more important for large
units than for small ones. A short marker comment fits on the same line as the reserved
word with which it is associated. Thus, it adds information without clutter.

The if, elsif, else, and end if of an if statement are often separated by long sequences
of statements, sometimes involving other if statements. As shown in the first example,
marker comments emphasize the association of the keywords of the same statement over a
great visual distance. Marker comments are not necessary with the block statement and
loop statement because the syntax of these statements allows them to be named with the
name repeated at the end. Using these names is better than using marker comments because
the compiler verifies that the names at the beginning and end match.

The sequence of statements of a package body is often very far from the first line of the
package. Many subprogram bodies, each containing many begin lines, may occur first. As
shown in the second example, the marker comment emphasizes the association of the begin
with the package.

notes
Repeating names and noting conditional expressions clutters the code if overdone. It is
visual distance, especially page breaks, that makes marker comments beneficial.

4.5 Using Types
Strong typing promotes reliability in software. The type definition of an object defines
all legal values and operations and allows the compiler to check for and identify potential
errors during compilation. In addition, the rules of type allow the compiler to generate code
to check for violations of type constraints at execution time. Using these Ada compiler's
features facilitates earlier and more complete error detection than that which is available
with less strongly typed languages.

4.5.1 Declaring Types
guideline
• Limit the range of scalar types as much as possible.
• Seek information about possible values from the application.
• Do not reuse any of the subtype names in package Standard.
• Use subtype declarations to improve program readability (Booch 1987).
• Use derived types and subtypes in concert (see Guideline 5.3.1).

63

Readability

example
subtype Card_Image is String (1 .. 80);
Input_Line : Card_Image := (others => ' ');
-- restricted integer type:
type Day_Of_Leap_Year is range 1 .. 366;
subtype Day_Of_Non_Leap_Year is Day_Of_Leap_Year range 1 .. 365;

By the following declaration, the programmer means, ”I haven't the foggiest idea how many,”
but the actual base range will show up buried in the code or as a system parameter:
Employee_Count : Integer;

rationale
Eliminating meaningless values from the legal range improves the compiler's ability to detect
errors when an object is set to an invalid value. This also improves program readability.
In addition, it forces you to carefully think about each use of objects declared to be of the
subtype.

Different implementations provide different sets of values for most of the predefined types.
A reader cannot determine the intended range from the predefined names. This situation
is aggravated when the predefined names are overloaded.

The names of an object and its subtype can clarify their intended use and document low-level
design decisions. The example above documents a design decision to restrict the software to
devices whose physical parameters are derived from the characteristics of punch cards. This
information is easy to find for any later changes, thus enhancing program maintainability.

You can rename a type by declaring a subtype without a constraint (Ada Reference Manual
1995, §8.5 3 [Annotated4]). You cannot overload a subtype name; overloading only applies
to callable entities. Enumeration literals are treated as parameterless functions and so are
included in this rule.

Types can have highly constrained sets of values without eliminating useful values. Usage
as described in Guideline 5.3.1 eliminates many flag variables and type conversions within
executable statements. This renders the program more readable while allowing the compiler
to enforce strong typing constraints.

notes
Subtype declarations do not define new types, only constraints for existing types.

Any deviation from this guideline detracts from the advantages of the strong typing facilities
of the Ada language.

3 http://www.adaic.com/standards/95lrm/html/RM-8-5.html

64

http://www.adaic.com/standards/95lrm/html/RM-8-5.html

Using Types

exceptions
There are cases where you do not have a particular dependence on any range of numeric
values. Such situations occur, for example, with array indices (e.g., a list whose size is not
fixed by any particular semantics). See Guideline 7.2.1 for a discussion of appropriate uses
of predefined types.

4.5.2 Enumeration Types
guideline
• Use enumeration types instead of numeric codes.
• Only if absolutely necessary, use representation clauses to match requirements of external
devices.

example
Use:
type Color is (Blue, Red, Green, Yellow);

rather than:
Blue : constant := 1;
Red : constant := 2;
Green : constant := 3;
Yellow : constant := 4;

and add the following if necessary:
for Color use (Blue => 1,

Red => 2,
Green => 3,
Yellow => 4);

rationale
Enumerations are more robust than numeric codes; they leave less potential for errors
resulting from incorrect interpretation and from additions to and deletions from the set
of values during maintenance. Numeric codes are holdovers from languages that have no
user-defined types.

In addition, Ada provides a number of attributes ('Pos, 'Val, 'Succ, 'Pred, 'Image, and
'Value) for enumeration types that, when used, are more reliable than user-written opera-
tions on encodings.

A numeric code may at first seem appropriate to match external values. Instead, these sit-
uations call for a representation clause on the enumeration type. The representation clause
documents the ”encoding.” If the program is properly structured to isolate and encapsu-
late hardware dependencies (see Guideline 7.1.5), the numeric code ends up in an interface
package where it can be easily found and replaced if the requirements change.

65

Readability

In general, avoid using representation clauses for enumeration types. When there is no
obvious ordering of the enumeration literals, an enumeration representation can create
portability problems if the enumeration type must be reordered to accommodate a change
in representation order on the new platform.

4.6 Summary
4.6.1 spelling
• Use underscores to separate words in a compound name.
• Represent numbers in a consistent fashion.
• Represent literals in a radix appropriate to the problem.
• Use underscores to separate digits the same way commas or periods (or spaces for non-
decimal bases) would be used in normal text.

• When using scientific notation, make the E consistently either uppercase or lowercase.
• In an alternate base, represent the alphabetic characters in either all uppercase or all
lowercase.

• Make reserved words and other elements of the program visually distinct from each other.
• Do not use an abbreviation of a long word as an identifier where a shorter synonym exists.
• Use a consistent abbreviation strategy.
• Do not use ambiguous abbreviations.
• To justify its use, an abbreviation must save many characters over the full word.
• Use abbreviations that are well-accepted in the application domain.
• Maintain a list of accepted abbreviations, and use only abbreviations on that list.

4.6.2 naming conventions
• Choose names that are as self-documenting as possible.
• Use a short synonym instead of an abbreviation.
• Use names given by the application, but do not use obscure jargon.
• Avoid using the same name to declare different kinds of identifiers.
• Use singular, general nouns as subtype identifiers.
• Choose identifiers that describe one of the subtype's values.
• Consider using suffixes for subtype identifiers that define visible access types, visible
subranges, or visible array types.

• For private types, do not use identifier constructions (e.g., suffixes) that are unique to
subtype identifiers.

• Do not use the subtype names from predefined packages.
• Use predicate clauses or adjectives for Boolean objects.
• Use singular, specific nouns as object identifiers.
• Choose identifiers that describe the object's value during execution.
• Use singular, general nouns as identifiers for record components.
• Use a consistent naming convention for tagged types and associated packages.
• Use action verbs for procedures and entries.
• Use predicate clauses for Boolean functions.
• Use nouns for non-Boolean functions.

66

Summary

• Give packages names that imply a higher level of organization than subprograms. Gen-
erally, these are noun phrases that describe the abstraction provided.

• Give tasks names that imply an active entity.
• Use nouns descriptive of the data being protected for protected units.
• Consider naming generic subprograms as if they were nongeneric subprograms.
• Consider naming generic packages as if they were nongeneric packages.
• Make the generic names more general than the instantiated names.
• Use symbolic values instead of literals, wherever possible.
• Use the predefined constants Ada.Numerics.Pi and Ada.Numerics.e for the mathematical
constants Pi and e.

• Use constants instead of variables for constant values.
• Use a constant when the value is specific to a type or when the value must be static.
• Use named numbers instead of constants, whenever possible.
• Use named numbers to replace numeric literals whose type or context is truly universal.
• Use constants for objects whose values cannot change after elaboration. (United Tech-
nologies 1987).

• Show relationships between symbolic values by defining them with static expressions.
• Use linearly independent sets of literals.
• Use attributes like 'First and 'Last instead of literals, wherever possible.
• Use a name that indicates the kind of problem the exception represents.
• Include a prefix like New, Make, or Create in naming constructors (in this sense, opera-
tions to create and/or initialize an object).

• Use names indicative of their content for child packages containing constructors.

4.6.3 comments
• Make the code as clear as possible to reduce the need for comments.
• Never repeat information in a comment that is readily available in the code.
• Where a comment is required, make it concise and complete.
• Use proper grammar and spelling in comments.
• Make comments visually distinct from the code.
• Structure comments in headers so that information can be automatically extracted by a
tool.

• Put a file header on each source file.
• Place ownership, responsibility, and history information for the file in the file header.
• Put a header on the specification of each program unit.
• Place information required by the user of the program unit in the specification header.
• Do not repeat information (except unit name) in the specification header that is present
in the specification.

• Explain what the unit does, not how or why it does it.
• Describe the complete interface to the program unit, including any exceptions it can raise
and any global effects it can have.

• Do not include information about how the unit fits into the enclosing software system.
• Describe the performance (time and space) characteristics of the unit.
• Place information required by the maintainer of the program unit in the body header.
• Explain how and why the unit performs its function, not what the unit does.

67

Readability

• Do not repeat information (except unit name) in the header that is readily apparent from
reading the code.

• Do not repeat information (except unit name) in the body header that is available in the
specification header.

• Comment on all data types, objects, and exceptions unless their names are self-
explanatory.

• Include information on the semantic structure of complex, pointer-based data structures.
• Include information about relationships that are maintained between data objects.
• Omit comments that merely repeat the information in the name.
• Include information on redispatching for tagged types in cases where you intend the
specializations (i.e., derived types) to override these redispatching operations.

• Minimize comments embedded among statements.
• Use comments only to explain parts of the code that are not obvious.
• Comment intentional omissions from the code.
• Do not use comments to paraphrase the code.
• Do not use comments to explain remote pieces of code, such as subprograms called by
the current unit.

• Where comments are necessary, make them visually distinct from the code.
• Use pagination markers to mark program unit boundaries.
• Repeat the unit name in a comment to mark the begin of a package body, subprogram
body, task body, or block if the begin is preceded by declarations.

• For long or heavily nested if and case statements, mark the end of the statement with a
comment summarizing the condition governing the statement.

• For long or heavily nested if statements, mark the else part with a comment summarizing
the conditions governing this portion of the statement.

4.6.4 using types
• Limit the range of scalar types as much as possible.
• Seek information about possible values from the application.
• Do not reuse any of the subtype names in package Standard.
• Use subtype declarations to improve program readability (Booch 1987).
• Use derived types and subtypes in concert.
• Use enumeration types instead of numeric codes.
• Only if absolutely necessary, use representation clauses to match requirements of external
devices.

68

5 Program Structure

5.1 Introduction
Proper structure improves program clarity. This is analogous to readability on lower levels
and facilitates the use of the readability guidelines (Chapter 3). The various program
structuring facilities provided by Ada were designed to enhance overall clarity of design.
These guidelines show how to use these facilities for their intended purposes.

The concept of child packages supports the concept of subsystem, where a subsystem is
represented in Ada as a hierarchy of library units. In general, a large system should be
structured as a series of subsystems. Subsystems should be used to represent logically related
library units, which together implement a single, high-level abstraction or framework.

Abstraction and encapsulation are supported by the package concept and by private types.
Related data and subprograms can be grouped together and seen by a higher level as a single
entity. Information hiding is enforced via strong typing and by the separation of package
and subprogram specifications from their bodies. Exceptions and tasks are additional Ada
language elements that impact program structure.

5.2 High-Level Structure
Well-structured programs are easily understood, enhanced, and maintained. Poorly struc-
tured programs are frequently restructured during maintenance just to make the job easier.
Many of the guidelines listed below are often given as general program design guidelines.

5.2.1 Separate Compilation Capabilities
guideline
• Place the specification of each library unit package in a separate file from its body.
• Avoid defining library unit subprograms that are not intended to be used as main pro-
grams. If such subprograms are defined, then create an explicit specification, in a separate
file, for each library unit subprogram.

• Minimize the use of subunits.
• In preference to subunits, use child library units to structure a subsystem into manageable
units.

• Place each subunit in a separate file.
• Use a consistent file naming convention.
• In preference to nesting in a package body, use a private child and with it to the parent
body.

69

Program Structure

• Use private child unit specifications for data and subprograms that are required by (other)
child units that extend a parent unit's abstraction or services.

example
The file names below illustrate one possible file organization and associated consistent nam-
ing convention. The library unit name uses the adb suffix for the body. The suffix ads
indicates the specification, and any files containing subunits use names constructed by sep-
arating the body name from the subunit name with an underscore:
text_io.ads — the specification
text_io.adb — the body
text_io_integer_io.adb — a subunit
text_io_fixed_io.adb — a subunit
text_io_float_io.adb — a subunit
text_io_enumeration_io.adb — a subunit

Depending on what characters your file system allows you to use in file names, you could
show the distinction between parent and subunit name more clearly in the file name. If
your file system allows the ”#” character, for example, you could separate the body name
from the subunit name with a #:
text_io.ads — the specification
text_io.adb — the body
text_io#integer_io.adb — a subunit
text_io#fixed_io.adb — a subunit
text_io#float_io.adb — a subunit
text_io#enumeration_io.adb — a subunit

Some operating systems are case-sensitive, although Ada itself is not a case-sensitive lan-
guage. For example, you could choose a convention of all lowercase file names.

rationale
The main reason for the emphasis on separate files in this guideline is to minimize the
amount of recompilation required after each change. Typically, during software develop-
ment, bodies of units are updated far more often than specifications. If the body and
specification reside in the same file, then the specification will be compiled each time the
body is compiled, even though the specification has not changed. Because the specification
defines the interface between the unit and all of its users, this recompilation of the speci-
fication typically makes recompilation of all users necessary in order to verify compliance
with the specification. If the specifications and bodies of the users also reside together,
then any users of these units will also have to be recompiled and so on. The ripple effect
can force a huge number of compilations that could have been avoided, severely slowing the
development and test phase of a project. This is why you should place specifications of all
library units (nonnested units) in separate files from their bodies.

Library unit subprograms should be minimized. The only real use for library unit sub-
programs is as the main subprogram. In almost all other cases, it is better to embed the
subprogram into a package. This provides a place (the package body) to localize data
needed by the subprogram. Moreover, it cuts down on the number of separate modules in
the system.

70

High-Level Structure

In general, you should use a separate specification for any library subprogram that is men-
tioned in a with clause. This makes the with'ing unit dependent on the library subprogram
specification, not its body.

You should minimize the use of subunits because they create maintenance problems. Dec-
larations appearing in the parent body are visible in the subunit, increasing the amount
of data global to the subunit and, thus, increasing the potential ripple effect of changes.
Subunits hinder reuse because they provide an incentive to put otherwise reusable code in
the subunit directly rather than in a common routine called from multiple subprograms.

With the availability of child library units in Ada 95, you can avoid most uses of subunits.
For example, instead of using a subunit for a large nested body, you should try to encapsulate
this code in a child library unit and add the necessary context clauses. You can modify the
body of the child unit without having to recompile any of the other units in a subsystem.

An additional benefit of using multiple, separate files is that it allows different implementors
to modify different parts of the system at the same time with conventional editors, which
do not allow multiple concurrent updates to a single file.

Finally, keeping bodies and specifications separate makes it possible to have multiple bodies
for the same specification or multiple specifications for the same body. Although Ada
requires that there be exactly one specification per body in a system at any given time, it
can still be useful to maintain multiple bodies or multiple specifications for use in different
builds of a system. For example, a single specification may have multiple bodies, each
of which implements the same functionality with a different tradeoff of time versus space
efficiency, or, for machine-dependent code, there may be one body for each target machine.
Maintaining multiple package specifications can also be useful during development and test.
You may develop one specification for delivery to your customer and another for unit testing.
The first one would export only those subprograms intended to be called from outside of
the package during normal operation of the system. The second one would export all
subprograms of the package so that each of them could be independently tested.

A consistent file naming convention is recommended to make it easier to manage the large
number of files that may result from following this guideline.

In implementing the abstraction defined in a package specification, you often need to write
supporting subprograms that manipulate the internal representation of the data. These
subprograms should not be exported on the interface. You have a choice of whether to
place them in the package body of the parent program or in a child package named in a
context clause of the parent package body. When you place them in the parent package
body, you make them inaccessible to all clients of the parent, including extensions of the
parent declared in child packages. If these subprograms are needed to implement extensions
of the parent abstraction, you would be forced to modify both the parent specification and
the body because you would have to declare the extensions within the parent specification.
This technique would then force recompilation of the entire package (specification and body)
as well as all its clients.

Alternatively, you can implement the supporting subprograms in a private child package.
Because the parent unit's specification is not modified, neither it nor its clients need to
be recompiled. The data and subprograms that might have declared in the parent unit
body must now be declared in the private child unit's specification to make them visible

71

Program Structure

to both the parent unit body and to any child units that extend the parent unit's services
or abstractions. (See also Guidelines 4.1.6 and 4.2.) This use of private child units will
generally minimize recompilations within the unit family and among its clients.

In declaring the child package private, you achieve a similar effect to declaring it in the
parent package body to the extent that clients of the parent cannot name the private
child in a context clause. You gain flexibility because now you can extend the parent
abstraction using child packages without having to recompile the parent specification or
its body, assuming that you do not otherwise modify the parent or its body. This added
flexibility will usually compensate for the increased dependency between units, in this case,
the additional context clause on the parent body (and other child package bodies) that
names the private child package of supporting subprograms.

5.2.2 Configuration Pragmas
guideline
• When possible, express configuration pragmas through compiler options or other means
that do not require modifications to the source code.

• When configuration pragmas must be placed in source code, consider isolating them to
one compilation unit per partition; if specified, the main subprogram for the partition is
recommended.

rationale
Configuration pragmas are generally used to select a partition-wide or system-wide op-
tion. Usually, they reflect either high-level software architecture decisions (e.g., pragma
Task_Dispatching_Policy) or the use of the software in a particular application domain
(e.g., safety-critical software). If a configuration pragma is embedded within a software
component and that component is reused in a different context where the pragma is no
longer appropriate, then it may cause problems in the new application. Such problems
can include the rejection by the compilation system of otherwise legal source code or un-
expected behavior at run-time. These problems can be significant given the wide scope of
a configuration pragma. In addition, maintenance of the original system may require that
some of these system-wide decisions be changed. If the configuration pragmas are scattered
throughout the software, it may be difficult to locate the lines that need to change.

As a result, it is recommended that all configuration pragmas be kept in a single compilation
unit if possible to make them easy to locate and modify as needed. If this compilation unit is
unlikely to be reused (e.g., a main subprogram), then the likelihood of conflicts with future
reusers is reduced. Finally, if these system-wide decisions are indicated without embedding
them in the code at all, such as through a compiler option, then the problems described
above are even less likely to occur.

exceptions
Certain pragmas (e.g., pragma Suppress) can be used in several forms, including as a con-
figuration pragma. This guideline does not apply to such pragmas when they are not used
as a configuration pragma.

72

High-Level Structure

5.2.3 Subprograms
guideline
• Use subprograms to enhance abstraction.
• Restrict each subprogram to the performance of a single action.

example
Your program is required to draw a menu of user options as part of a menu-driven user
interface package. Because the contents of the menu can vary depending on the user state,
the proper way to do this is to write a subprogram to draw the menu. This way, the output
subprogram has one purpose and the way to determine the menu content is described
elsewhere.
...
--
procedure Draw_Menu

(Title : in String;
Options : in Menu) is

...
begin -- Draw_Menu

Ada.Text_IO.New_Page;
Ada.Text_IO.New_Line;
Ada.Text_IO.Set_Col (Right_Column);
Ada.Text_IO.Put_Line (Title);
Ada.Text_IO.New_Line;
for Choice in Alpha_Numeric loop

if Options (Choice) /= Empty_Line then
Valid_Option (Choice) := True;
Ada.Text_IO.Set_Col (Left_Column);
Ada.Text_IO.Put (Choice & " -- ");
Ada.Text_IO.Put_Line (Options (Choice));

end if;
...

end loop;
end Draw_Menu;
--

rationale
Subprograms are an extremely effective and well-understood abstraction technique. Sub-
programs increase program readability by hiding the details of a particular activity. It is
not necessary that a subprogram be called more than once to justify its existence.

notes
Guideline 10.7.1 discusses dealing with the overhead of subroutine calls.

5.2.4 Functions
guideline
• Use a function when the subprogram's primary purpose is to provide a single value.
• Minimize the side effect of a function.

73

Program Structure

• Consider using a parameterless function when the value does not need to be static.
• Use a parameterless function (instead of a constant) if the value should be inherited by
types derived from the type.

• Use a parameterless function if the value itself is subject to change.

example
Although reading a character from a file will change what character is read next, this is
accepted as a minor side effect compared to the primary purpose of the following function:
function Next_Character return Character is separate;

However, the use of a function like this could lead to a subtle problem. Any time the order
of evaluation is undefined, the order of the values returned by the function will effectively
be undefined. In this example, the order of the characters placed in Word and the order
that the following two characters are given to the Suffix parameters are unknown. No
implementation of the Next_Character function can guarantee which character will go
where:

Word : constant String := String'(1 .. 5 => Next_Character);
begin -- Start_Parsing

Parse(Keyword => Word,
Suffix1 => Next_Character,
Suffix2 => Next_Character);

end Start_Parsing;

Of course, if the order is unimportant (as in a random number generator), then the order
of evaluation is unimportant.

The following example shows the use of a parameterless function instead of a constant:
type T is private;
function Nil return T; -- This function is a derivable operation of type
T
function Default return T; -- Also derivable, and the value can be changed by

-- recompiling the body of the function

This same example could have been written using constants:
type T is private;
Nil : constant T;
Default : constant T;

rationale
A side effect is a change to any variable that is not local to the subprogram. This includes
changes to variables by other subprograms and entries during calls from the function if
the changes persist after the function returns. Side effects are discouraged because they
are difficult to understand and maintain. Additionally, the Ada language does not define
the order in which functions are evaluated when they occur in expressions or as actual
parameters to subprograms. Therefore, a program that depends on the order in which side
effects of functions occur is erroneous. Avoid using side effects anywhere.

74

High-Level Structure

5.2.5 Packages
guideline
• Use packages for information hiding.
• Use packages with tagged types and private types for abstract data types.
• Use packages to model abstract entities appropriate to the problem domain.
• Use packages to group together related type and object declarations (e.g., common dec-
larations for two or more library units).

• Encapsulate machine dependencies in packages. Place a software interface to a particular
device in a package to facilitate a change to a different device.

• Place low-level implementation decisions or interfaces in subprograms within packages.
• Use packages and subprograms to encapsulate and hide program details that may change
(Nissen and Wallis 1984).

example
Reading the names and other attributes of external files is highly machine dependent. A
package called Directory could contain type and subprogram declarations to support a
generalized view of an external directory that contains external files. Its internals may, in
turn, depend on other packages more specific to the hardware or operating system:
package Directory is

type Directory_Listing is limited private;

procedure Read_Current_Directory (D : in out Directory_Listing);

generic
with procedure Process (Filename : in String);

procedure Iterate (Over : in Directory_Listing);

...

private

type Directory_Listing is ...

end Directory;

package body Directory is

-- This procedure is machine dependent
procedure Read_Current_Directory (D : in out Directory_Listing) is separate;

procedure Iterate (Over : in Directory_Listing) is
...

begin
...

Process (Filename);

...
end Iterate;

...

75

Program Structure

end Directory;

rationale
Packages are the principal structuring facility in Ada. They are intended to be used as direct
support for abstraction, information hiding, and modularization. For example, they are
useful for encapsulating machine dependencies as an aid to portability. A single specification
can have multiple bodies isolating implementation-specific information so other parts of the
code do not need to change.

Encapsulating areas of potential change helps to minimize the effort required to implement
that change by preventing unnecessary dependencies among unrelated parts of the system.

notes
The most prevalent objection to this guideline usually involves performance penalties. See
Guideline 10.7.1 for a discussion about subprogram overhead.

5.2.6 Child Library Units
guideline
• If a new library unit represents a logical extension to the original abstraction, define it
as a child library unit.

• If a new library unit is independent (e.g., introduces a new abstraction that depends only
in part on the existing one), then encapsulate the new abstraction in a separate library
unit.

• Use child packages to implement a subsystem.
• Use public child units for those parts of a subsystem that should be visible to clients of
the subsystem.

• Use private child units for those parts of a subsystem that should not be visible to clients
of the subsystem.

• Use private child units for local declarations used only in implementing the package
specification.

• Use child packages to implement constructors, even when they return access values.

example
The following example of a windowing system is taken from Cohen et al. (1993) and
illustrates some of the uses of child units in designing subsystems. The parent (root)
package declares the types, subtypes, and constants that its clients and subsystems need.
Individual child packages provide specific parts of the windowing abstraction, such as atoms,
fonts, graphic output, cursors, and keyboard information:
package X_Windows is

...
private

76

High-Level Structure

...
end X_Windows;

package X_Windows.Atoms is
type Atom is private;
...

private
...

end X_Windows.Atoms;

package X_Windows.Fonts is
type Font is private;
...

private
...

end X_Windows.Fonts;

package X_Windows.Graphic_Output is
type Graphic_Context is private;
type Image is private;
...

private
...

end X_Windows.Graphic_Output;

package X_Windows.Cursors is
...

end X_Windows.Cursors;

package X_Windows.Keyboard is
...

end X_Windows.Keyboard;

rationale
The user can create more precise packages with less cluttered interfaces, using child library
packages to extend the interfaces as needed. The parent contains only the relevant func-
tionality. The parent provides a general-purpose interface, while the child units provide
more complete programming interfaces, tailored to that aspect of an abstraction that they
are extending or defining.

Child packages build on the modular strength of Ada where ”the distinct specification and
body decouple the user interface to a package (the specification) from its implementation
(the body)” (Rationale 1995, §II.7). Child packages provide the added capability of being
able to extend a parent package without recompiling the parent or the parent's clients.

Child packages allow you to write logically distinct packages that share a private type. The
visibility rules give the private part of the child specification and the body of the child
visibility into the private part of the parent. Thus, you can avoid creating a monolithic
package for the sake of developing abstractions that share a private type and need to know
its representation. The private representation is not available to clients of the package, so
the abstraction in the package and its children is maintained.

Using private child packages for local declarations enables you to have available the sup-
port declarations you need when implementing both the parent package and extensions to
the parent package. You enhance the maintainability of your program by using a common
set of support declarations (data representations, data manipulation subprograms). You

77

Program Structure

can modify the internal representation and the implementation of the support subprograms
without modifying or recompiling the rest of your subsystem because these support subpro-
grams are implemented in the body of the private child package. See also Guidelines 4.1.1,
4.2.1, 8.4.1, and 8.4.8.

See also Guideline 9.4.1 for a discussion of the use of child library units in creating a tagged
type hierarchy.

5.2.7 Cohesion
guideline
• Make each package serve a single purpose.
• Use packages to group related data, types, and subprograms.
• Avoid collections of unrelated objects and subprograms (NASA 1987; Nissen and Wallis
1984).

• Consider restructuring a system to move two highly related units into the same package
(or package hierarchy) or to move relatively independent units into separate packages.

example
As a bad example, a package named Project_Definitions is obviously a ”catch all” for a
particular project and is likely to be a jumbled mess. It probably has this form to permit
project members to incorporate a single with clause into their software.

Better examples are packages called Display_Format_Definitions, containing all the
types and constants needed by some specific display in a specific format, and Car-
tridge_Tape_Handler, containing all the types, constants, and subprograms that provide
an interface to a special-purpose device.

rationale
The degree to which the entities in a package are related has a direct impact on the ease
of understanding packages and programs made up of packages. There are different criteria
for grouping, and some criteria are less effective than others. Grouping the class of data or
activity (e.g., initialization modules) or grouping data or activities based on their timing
characteristics is less effective than grouping based on function or need to communicate
through data (Charette 1986).

The ”correct” structuring of a system can make a tremendous difference in the maintain-
ability of a system. Although it may seem painful at the time, it is important to restructure
if the initial structuring is not quite right.

See also Guideline 5.4.2 on heterogeneous data.

notes
Traditional subroutine libraries often group functionally unrelated subroutines. Even such
libraries should be broken into a collection of packages, each containing a logically cohesive
set of subprograms.

78

High-Level Structure

5.2.8 Data Coupling
guideline
• Avoid declaring variables in package specifications.

example
This is part of a compiler. Both the package handling error messages and the package
containing the code generator need to know the current line number. Rather than storing
this in a shared variable of type Natural, the information is stored in a package that hides the
details of how such information is represented and makes it available with access routines:

package Compilation_Status is

type Line_Number is range 1 .. 2_500_000;
function Source_Line_Number return Line_Number;

end Compilation_Status;

with Compilation_Status;
package Error_Message_Processing is

-- Handle compile-time diagnostic.
end Error_Message_Processing;

with Compilation_Status;

package Code_Generation is
-- Operations for code generation.

end Code_Generation;

rationale
Strongly coupled program units can be difficult to debug and very difficult to maintain.
By protecting shared data with access functions, the coupling is lessened. This prevents
dependence on the data structure, and access to the data can be controlled.

notes
The most prevalent objection to this guideline usually involves performance penalties. When
a variable is moved to the package body, subprograms to access the variable must be
provided and the overhead involved during each call to those subprograms is introduced.
See Guideline 10.7.1 for a discussion about subprogram overhead.

5.2.9 Tasks
guideline
• Use tasks to model abstract, asynchronous entities within the problem domain.
• Use tasks to define concurrent algorithms for multiprocessor architectures.
• Use tasks to perform concurrent, cyclic, or prioritized activities (NASA 1987).

79

Program Structure

rationale
The rationale for this guideline is given under Guideline 6.1.2. Chapter 6 discusses tasking
in more detail.

5.2.10 Protected Types
guideline
• Use protected types to control or synchronize access to data or devices.
• Use protected types to implement synchronization tasks, such as a passive resource mon-
itor.

example
See example in Guideline 6.1.1.

rationale
The rationale for this guideline is given under Guideline 6.1.1. Chapter 6 discusses concur-
rency and protected types in more detail.

5.3 Visibility
Ada's ability to enforce information hiding and separation of concerns through its visibility
controlling features is one of the most important advantages of the language, particularly
when ”pieces of a large system are being developed separately.” Subverting these features,
for example, by excessive reliance on the use clause, is wasteful and dangerous. See also
Guidelines 5.7 and 9.4.1.

5.3.1 Minimization of Interfaces
guideline
• Put only what is needed for the use of a package into its specification.
• Minimize the number of declarations in package specifications.
• Do not include extra operations simply because they are easy to build.
• Minimize the context (with) clauses in a package specification.
• Reconsider subprograms that seem to require large numbers of parameters.
• Do not manipulate global data within a subprogram or package merely to limit the
number of parameters.

• Avoid unnecessary visibility; hide the implementation details of a program unit from its
users.

• Use child library units to control the visibility of parts of a subsystem interface.
• Use private child packages for those declarations that should not be used outside the
subsystem.

• Use child library units present different views of an entity to different clients.

80

Visibility

• Design (and redesign) interfaces after having worked out the logic of various expected
clients of the interface.

example

package Telephone_Book is

type Listing is limited private;
procedure Set_Name (New_Name : in String;

Current : in out Listing);
procedure Insert (Name : in String;

Current : in out Listing);
procedure Delete (Obsolete : in String;

Current : in out Listing);
private

type Information;
type Listing is access Information;

end Telephone_Book;

package body Telephone_Book is

-- Full details of record for a listing
type Information is

record
...
Next : Listing;

end record;
First : Listing;
procedure Set_Name (New_Name : in String;

Current : in out Listing) is separate;
procedure Insert (Name : in String;

Current : in out Listing) is separate;
procedure Delete (Obsolete : in String;

Current : in out Listing) is separate;
end Telephone_Book;

rationale
For each entity in the specification, give careful consideration to whether it could be moved
to a child package or to the parent package body. The fewer the extraneous details, the more
understandable the program, package, or subprogram. It is important to maintainers to
know exactly what a package interface is so that they can understand the effects of changes.
Interfaces to a subprogram extend beyond the parameters. Any modification of global data
from within a package or subprogram is an undocumented interface to the ”outside” as well.

Minimize the context clauses on a specification by moving unnecessary clauses to the body.
This technique makes the reader's job easier, localizes the recompilation required when li-
brary units change, and helps prevent a ripple effect during modifications. See also Guideline
4.2.3.

Subprograms with large numbers of parameters often indicate poor design decisions (e.g.,
the functional boundaries of the subprogram are inappropriate or parameters are structured
poorly). Conversely, subprograms with no parameters are likely to be accessing global data.

Objects visible within package specifications can be modified by any unit that has visibility
to them. The object cannot be protected or represented abstractly by its enclosing package.
Objects that must persist should be declared in package bodies. Objects whose value

81

Program Structure

depends on program units external to their enclosing package are probably either in the
wrong package or are better accessed by a subprogram specified in the package specification.

Child library units can provide distinct views of the hierarchical library. The engineer can
provide a different view for the client than for the implementor (Rationale 1995, §10.1). By
creating private child packages, the engineer can provide facilities that are only available
inside the subsystem rooted at the parent library unit. The declarations inside a private
child package specification are not exported outside the subsystem. Thus, the engineer
can declare utilities needed to implement an abstraction in a private child package (e.g.,
debugging utilities [Cohen et al. 1993]) and be certain that users of the abstraction (i.e.,
the clients) cannot access these utilities.

Different clients may have different needs for essentially the same resource. Instead of having
multiple versions of the resources, consider having child units that export different views
for different purposes.

Designing an interface based strictly on predicting what clients ”might” need can produce
a bloated and inappropriate interface. What then happens is that clients try to ”live” with
the interface and work around the inappropriate interfaces, repeating code that logically
should be part of the shared abstraction. See Guideline 8.3.1 for a discussion of interfaces
from the reusability perspective.

notes
In some cases, subroutine libraries look like large, monolithic packages. In such cases, it may
be beneficial to break these up into smaller packages, grouping them according to category
(e.g., trigonometric functions).

5.3.2 Nested Packages
guideline
• Use child packages rather than nested packages to present different views of the same
abstraction.

• Nest package specifications within another package specification only for grouping oper-
ations or hiding common implementation details.

example
Annex A of the Ada Reference Manual (1995) gives an example of package specification
nesting. The specification of the generic package Generic_Bounded_Length is nested inside
the specification of package Ada.Strings.Bounded. The nested package is a generic, grouping
closely related operations.

rationale
Grouping package specifications into an encompassing package emphasizes a relationship of
commonality among those packages. It also allows them to share common implementation
details resulting from the relationship. Nesting packages allows you to organize the name

82

Visibility

space of the package in contrast to the semantic effect of nesting inside of subprograms or
task bodies.

An abstraction occasionally needs to present different views to different classes of users.
Building one view upon another as an additional abstraction does not always suffice because
the functionality of the operations presented by the views may be only partially disjointed.
Nesting specifications groups the facilities of the various views, yet associates them with
the abstraction they present. Abusive mixing of the views by another unit would be easy
to detect due to the multiple use clauses or an incongruous mix of qualified names.

See the rationale discussed in Guideline 4.2.1.

5.3.3 Restricting Visibility
guideline
• Consider using private child packages in lieu of nesting.
• Restrict the visibility of program units as much as possible by nesting them inside package
bodies (Nissen and Wallis 1984) if you cannot use a private child package.

• Minimize nesting program units inside subprograms and tasks.
• Minimize the scope within which with clauses apply.
• Only with those units directly needed.

example
This program illustrates the use of child library units to restrict visibility. The procedure
Rational_Numbers.Reduce is nested inside the body of Rational_Numbers to restrict its
visibility to the implementation of this abstraction. Rather than make the text input/output
facilities visible to the entire rational number hierarchy, it is only available to the body of
the child library Rational_Numbers.IO. This example is adapted from the Ada Reference
Manual (1995, §§7.1 1 [Annotated2], 7.2 3 [Annotated4], and 10.1.1 5 [Annotated6]):

package Rational_Numbers is

type Rational is private;
function "=" (X, Y: Rational) return Boolean;
function "/" (X, Y: Integer) return Rational; -- construct a rational

number
function "+" (X, Y: Rational) return Rational;
function "-" (X, Y: Rational) return Rational;
function "*" (X, Y: Rational) return Rational;
function "/" (X, Y: Rational) return Rational; -- rational division

private
...

end Rational_Numbers;
package body Rational_Numbers is

procedure Reduce (R :in out Rational) is . . . end Reduce;
. . .

end Rational_Numbers;
package Rational_Numbers.IO is

1 http://www.adaic.com/standards/95lrm/html/RM-7-1.html
3 http://www.adaic.com/standards/95lrm/html/RM-7-2.html
5 http://www.adaic.com/standards/95lrm/html/RM-10-1-1.html

83

http://www.adaic.com/standards/95lrm/html/RM-7-1.html
http://www.adaic.com/standards/95lrm/html/RM-7-2.html
http://www.adaic.com/standards/95lrm/html/RM-10-1-1.html

Program Structure

procedure Put (R : in Rational);
procedure Get (R : out Rational);

end Rational_Numbers.IO;
with Ada.Text_IO;
with Ada.Integer_Text_IO;
package body Rational_Numbers.IO is -- has visibility to parent private type
declaration
procedure Put (R : in Rational) is
begin

Ada.Integer_Text_IO.Put (Item => R.Numerator, Width => 0);
Ada.Text_IO.Put ("/");
Ada.Integer_Text_IO.Put (Item => R.Denominator, Width => 0);

end Put;
procedure Get (R : out Rational) is . . . end Get;

end Rational_Numbers.IO;

rationale
Restricting visibility of a program unit ensures that the program unit is not called from
some part of the system other than that which was intended. This is done by nesting it
inside the only unit that uses it, by hiding it inside a package body rather than declaring
it in the package specification, or by declaring it as a private child unit. This avoids errors
and eases the job of maintainers by guaranteeing that a local change in that unit will not
have an unforeseen global effect.

Restricting visibility of a library unit by using with clauses on subunits rather than on the
entire parent unit is useful in the same way. In the example above, it is clear that the
package Text_IO is used only by the Listing_Facilities package of the compiler.

Nesting inside subprograms and tasks is discouraged because it leads to unreusable compo-
nents. These components are essentially unreusable because they make undesirable up-level
references into the defining context. Unless you truly want to ensure that the program unit
is not called from some unintended part of the system, you should minimize this form of
nesting.

See also Guideline 4.2.1 for a discussion of the use of child units.

notes
One way to minimize the coverage of a with clause is to use it only with subunits that
really need it. Consider making those subunits separate compilation units when the need
for visibility to a library unit is restricted to a subprogram or two.

5.3.4 Hiding Tasks
guideline
• Carefully consider encapsulation of tasks.

84

Visibility

example

package Disk_Head_Scheduler is

type Words is ...
type Track_Number is ...
procedure Transmit (Track : in Track_Number;

Data : in Words);
...

end Disk_Head_Scheduler;

package body Disk_Head_Scheduler is

...
task Control is

entry Sign_In (Track : in Track_Number);
...

end Control;
--
task Track_Manager is

entry Transfer(Track_Number) (Data : in Words);
end Track_Manager;
--
...
procedure Transmit (Track : in Track_Number;

Data : in Words) is
begin

Control.Sign_In(Track);
Track_Manager.Transfer(Track)(Data);

end Transmit;
--
...

end Disk_Head_Scheduler;

rationale
The decision whether to declare a task in the specification or body of an enclosing package
is not a simple one. There are good arguments for both.

Hiding a task specification in a package body and exporting (via subprograms) only required
entries reduces the amount of extraneous information in the package specification. It allows
your subprograms to enforce any order of entry calls necessary to the proper operation of the
tasks. It also allows you to impose defensive task communication practices (see Guideline
6.2.2) and proper use of conditional and timed entry calls. Finally, it allows the grouping
of entries into sets for export to different classes of users (e.g., producers versus consumers)
or the concealment of entries that should not be made public at all (e.g., initialization,
completion, signals). Where performance is an issue and there are no ordering rules to
enforce, the entries can be renamed as subprograms to avoid the overhead of an extra
procedure call.

An argument, which can be viewed as an advantage or disadvantage, is that hiding the
task specification in a package body hides the fact of a tasking implementation from the
user. If the application is such that a change to or from a tasking implementation or a
reorganization of services among tasks need not concern users of the package, then this is
an advantage. However, if the package user must know about the tasking implementation
to reason about global tasking behavior, then it is better not to hide the task completely.
Either move it to the package specification or add comments stating that there is a task-
ing implementation, describing when a call may block, etc. Otherwise, it is the package

85

Program Structure

implementor's responsibility to ensure that users of the package do not have to concern
themselves with behaviors such as deadlock, starvation, and race conditions.

Finally, keep in mind that hiding tasks behind a procedural interface prevents the usage of
conditional and timed entry calls and entry families, unless you add parameters and extra
code to the procedures to make it possible for callers to direct the procedures to use these
capabilities.

5.4 Exceptions
This section addresses the issue of exceptions in the context of program structures. It
discusses how exceptions should be used as part of the interface to a unit, including what
exceptions to declare and raise and under what conditions to raise them. Information on
how to handle, propagate, and avoid raising exceptions is found in Guideline 5.8. Guidelines
on how to deal with portability issues are in Guideline 7.5.

5.4.1 Using Exceptions to Help Define an Abstraction
guideline
• For unavoidable internal errors for which no user recovery is possible, declare a single
user-visible exception. Inside the abstraction, provide a way to distinguish between the
different internal errors.

• Do not borrow an exception name from another context.
• Export (declare visibly to the user) the names of all exceptions that can be raised.
• In a package, document which exceptions can be raised by each subprogram and task
entry.

• Do not raise exceptions for internal errors that can be avoided or corrected within the
unit.

• Do not raise the same exception to report different kinds of errors that are distinguishable
by the user of the unit.

• Provide interrogative functions that allow the user of a unit to avoid causing exceptions
to be raised.

• When possible, avoid changing state information in a unit before raising an exception.
• Catch and convert or handle all predefined and compiler-defined exceptions at the earliest
opportunity.

• Do not explicitly raise predefined or implementation-defined exceptions.
• Never let an exception propagate beyond its scope.

example
This package specification defines two exceptions that enhance the abstraction:

generic

type Element is private;
package Stack is

function Stack_Empty return Boolean;

86

Exceptions

function Stack_Full return Boolean;

procedure Pop (From_Top : out Element);
procedure Push (Onto_Top : in Element);

-- Raised when Pop is used on empty stack.
Underflow : exception;

-- Raised when Push is used on full stack.
Overflow : exception;

end Stack;

...
--
procedure Pop (From_Top : out Element) is
begin

...

if Stack_Empty then
raise Underflow;

else -- Stack contains at least one element
Top_Index := Top_Index - 1;
From_Top := Data(Top_Index + 1);

end if;
end Pop;
--
...

rationale
Exceptions should be used as part of an abstraction to indicate error conditions that the
abstraction is unable to prevent or correct. Because the abstraction is unable to correct such
an error, it must report the error to the user. In the case of a usage error (e.g., attempting
to invoke operations in the wrong sequence or attempting to exceed a boundary condition),
the user may be able to correct the error. In the case of an error beyond the control of
the user, the user may be able to work around the error if there are multiple mechanisms
available to perform the desired operation. In other cases, the user may have to abandon
use of the unit, dropping into a degraded mode of limited functionality. In any case, the
user must be notified.

Exceptions are a good mechanism for reporting such errors because they provide an alternate
flow of control for dealing with errors. This allows error-handling code to be kept separate
from the code for normal processing. When an exception is raised, the current operation is
aborted and control is transferred directly to the appropriate exception handler.

Several of the guidelines above exist to maximize the ability of the user to distinguish
and correct different kinds of errors. Declaring new exception names, rather than raising
exceptions declared in other packages, reduces the coupling between packages and also
makes different exceptions more distinguishable. Exporting the names of all exceptions
that a unit can raise, rather than declaring them internally to the unit, makes it possible
for users of the unit to refer to the names in exception handlers. Otherwise, the user would
be able to handle the exception only with an others handler. Finally, use comments to
document exactly which of the exceptions declared in a package can be raised by each

87

Program Structure

subprogram or task entry making it possible for the user to know which exception handlers
are appropriate in each situation.

In situations where there are errors for which the abstraction user can take no intelligent
action (e.g., there is no workaround or degraded mode), it is better to export a single
internal error exception. Within the package, you should consider distinguishing between
the different internal errors. For instance, you could record or handle different kinds of
internal error in different ways. When you propagate the error to the user, however, you
should use a special internal error exception, indicating that no user recovery is possible.
You should also provide relevant information when you propagate the error, using the
facilities provided in Ada.Exceptions. Thus, for any abstraction, you effectively provide N
+ 1 different exceptions: N different recoverable errors and one irrecoverable error for which
there is no mapping to the abstraction. Both the application requirements and what the
client needs/wants in terms of error information help you identify the appropriate exceptions
for an abstraction.

Because they cause an immediate transfer of control, exceptions are useful for reporting un-
recoverable errors, which prevent an operation from being completed, but not for reporting
status or modes incidental to the completion of an operation. They should not be used to
report internal errors that a unit was able to correct invisibly to the user.

To provide the user with maximum flexibility, it is a good idea to provide interrogative
functions that the user can call to determine whether an exception would be raised if a
subprogram or task entry were invoked. The function Stack_Empty in the above example
is such a function. It indicates whether Underflow would be raised if Pop were called.
Providing such functions makes it possible for the user to avoid triggering exceptions.

To support error recovery by its user, a unit should try to avoid changing state during an
invocation that raises an exception. If a requested operation cannot be completely and
correctly performed, then the unit should either detect this before changing any internal
state information or should revert to the state at the time of the request. For example, after
raising the exception Underflow, the stack package in the above example should remain in
exactly the same state it was in when Pop was called. If it were to partially update its
internal data structures for managing the stack, then future Push and Pop operations would
not perform correctly. This is always desirable, but not always possible.

User-defined exceptions should be used instead of predefined or compiler-defined exceptions
because they are more descriptive and more specific to the abstraction. The predefined
exceptions are very general and can be triggered by many different situations. Compiler-
defined exceptions are nonportable and have meanings that are subject to change even
between successive releases of the same compiler. This introduces too much uncertainty for
the creation of useful handlers.

If you are writing an abstraction, remember that the user does not know about the units
you use in your implementation. That is an effect of information hiding. If any exception
is raised within your abstraction, you must catch it and handle it. The user is not able
to provide a reasonable handler if the original exception is allowed to propagate out of the
body of your abstraction. You can still convert the exception into a form intelligible to the
user if your abstraction cannot effectively recover on its own.

88

Summary

Converting an exception means raising a user-defined exception in the handler for the orig-
inal exception. This introduces a meaningful name for export to the user of the unit. Once
the error situation is couched in terms of the application, it can be handled in those terms.

5.5 Summary
5.5.1 high-level structure
• Place the specification of each library unit package in a separate file from its body.
• Avoid defining library unit subprograms that are not intended to be used as main pro-
grams. If such subprograms are defined, then create an explicit specification, in a separate
file, for each library unit subprogram.

• Minimize the use of subunits.
• In preference to subunits, use child library units to structure a subsystem into manageable
units.

• Place each subunit in a separate file.
• Use a consistent file naming convention.
• In preference to nesting in a package body, use a private child and with it to the parent
body.

• Use private child unit specifications for data and subprograms that are required by (other)
child units that extend a parent unit's abstraction or services.

• When possible, express configuration pragmas through compiler options or other means
that do not require modifications to the source code. .

• When configuration pragmas must be placed in source code, consider isolating them to
one compilation unit per partition; if specified, the main subprogram for the partition is
recommended.

• Use subprograms to enhance abstraction.
• Restrict each subprogram to the performance of a single action.
• Use a function when the subprogram's primary purpose is to provide a single value.
• Minimize the side effect of a function.
• Consider using a parameterless function when the value does not need to be static.
• Use a parameterless function (instead of a constant) if the value should be inherited by
types derived from the type.

• Use a parameterless function if the value itself is subject to change.
• Use packages for information hiding.
• Use packages with tagged types and private types for abstract data types.
• Use packages to model abstract entities appropriate to the problem domain.
• Use packages to group together related type and object declarations (e.g., common dec-
larations for two or more library units).

• Encapsulate machine dependencies in packages. Place a software interface to a particular
device in a package to facilitate a change to a different device.

• Place low-level implementation decisions or interfaces in subprograms within packages.
• Use packages and subprograms to encapsulate and hide program details that may change
(Nissen and Wallis 1984).

• If a new library unit represents a logical extension to the original abstraction, define it
as a child library unit.

89

Program Structure

• If a new library unit is independent (e.g., introduces a new abstraction that depends only
in part on the existing one), then encapsulate the new abstraction in a separate library
unit.

• Use child packages to implement a subsystem.
• Use public child units for those parts of a subsystem that should be visible to clients of
the subsystem.

• Use private child units for those parts of a subsystem that should not be visible to clients
of the subsystem.

• Use private child units for local declarations used only in implementing the package
specification.

• Use child packages to implement constructors, even when they return access values.
• Make each package serve a single purpose.
• Use packages to group related data, types, and subprograms.
• Avoid collections of unrelated objects and subprograms (NASA 1987; Nissen and Wallis
1984).

• Consider restructuring a system to move two highly related units into the same package
(or package hierarchy) or to move relatively independent units into separate packages.

• Avoid declaring variables in package specifications.
• Use tasks to model abstract, asynchronous entities within the problem domain.
• Use tasks to define concurrent algorithms for multiprocessor architectures.
• Use tasks to perform concurrent, cyclic, or prioritized activities (NASA 1987).
• Use protected types to control or synchronize access to data or devices.
• Use protected types to implement synchronization tasks, such as a passive resource mon-
itor.

5.5.2 visibility
• Put only what is needed for the use of a package into its specification.
• Minimize the number of declarations in package specifications.
• Do not include extra operations simply because they are easy to build.
• Minimize the context (with) clauses in a package specification.
• Reconsider subprograms that seem to require large numbers of parameters.
• Do not manipulate global data within a subprogram or package merely to limit the
number of parameters.

• Avoid unnecessary visibility; hide the implementation details of a program unit from its
users.

• Use child library units to control the visibility of parts of a subsystem interface.
• Use private child packages for those declarations that should not be used outside the
subsystem.

• Use child library units to present different views of an entity to different clients.
• Design (and redesign) interfaces after having worked out the logic of various expected
clients of the interface.

• Use child packages rather than nested packages to present different views of the same
abstraction.

• Nest package specifications within another package specification only for grouping oper-
ations or hiding common implementation details.

• Consider using private child packages in lieu of nesting.

90

Summary

• Restrict the visibility of program units as much as possible by nesting them inside package
bodies (Nissen and Wallis 1984) if you cannot use a private child package.

• Minimize nesting program units inside subprograms and tasks.
• Minimize the scope within which with clauses apply.
• Only with those units directly needed.
• Carefully consider encapsulation of tasks.

exceptions
• For unavoidable internal errors for which no user recovery is possible, declare a single
user-visible exception. Inside the abstraction, provide a way to distinguish between the
different internal errors.

• Do not borrow an exception name from another context.
• Export (declare visibly to the user) the names of all exceptions that can be raised.
• In a package, document which exceptions can be raised by each subprogram and task
entry.

• Do not raise exceptions for internal errors that can be avoided or corrected within the
unit.

• Do not raise the same exception to report different kinds of errors that are distinguishable
by the user of the unit.

• Provide interrogative functions that allow the user of a unit to avoid causing exceptions
to be raised.

• When possible, avoid changing state information in a unit before raising an exception.
• Catch and convert or handle all predefined and compiler-defined exceptions at the earliest
opportunity.

• Do not explicitly raise predefined or implementation-defined exceptions.
• Never let an exception propagate beyond its scope.

91

6 Programming Practices

6.1 Introduction
Software is always subject to change. The need for this change, euphemistically known
as ”maintenance” arises from a variety of sources. Errors need to be corrected as they are
discovered. System functionality may need to be enhanced in planned or unplanned ways.
Inevitably, the requirements change over the lifetime of the system, forcing continual system
evolution. Often, these modifications are conducted long after the software was originally
written, usually by someone other than the original author.

Easy and successful modification requires that the software be readable, understandable,
and structured according to accepted practice. If a software component cannot be easily
understood by a programmer who is familiar with its intended function, that software
component is not maintainable. Techniques that make code readable and comprehensible
enhance its maintainability. Previous chapters presented techniques such as consistent use
of naming conventions, clear and well-organized commentary, and proper modularization.
This chapter presents consistent and logical use of language features.

Correctness is one aspect of reliability. While style guidelines cannot enforce the use of
correct algorithms, they can suggest the use of techniques and language features known to
reduce the number or likelihood of failures. Such techniques include program construction
methods that reduce the likelihood of errors or that improve program predictability by
defining behavior in the presence of errors.

6.2 Optional Parts of the Syntax
Parts of the Ada syntax, while optional, can enhance the readability of the code. The
guidelines given below concern use of some of these optional features.

6.2.1 Loop Names
guideline
• Associate names with loops when they are nested (Booch 1986, 1987).
• Associate names with any loop that contains an exitstatement.

93

Programming Practices

example
Process_Each_Page:

loop
Process_All_The_Lines_On_This_Page:

loop
...
exit Process_All_The_Lines_On_This_Page when Line_Number =

Max_Lines_On_Page;
...
Look_For_Sentinel_Value:

loop
...
exit Look_For_Sentinel_Value when Current_Symbol = Sentinel;
...

end loop Look_For_Sentinel_Value;
...

end loop Process_All_The_Lines_On_This_Page;
...
exit Process_Each_Page when Page_Number = Maximum_Pages;
...

end loop Process_Each_Page;

rationale
When you associate a name with a loop, you must include that name with the associated
end for that loop (Ada Reference Manual 1995). This helps readers find the associated
end for any given loop. This is especially true if loops are broken over screen or page
boundaries. The choice of a good name for the loop documents its purpose, reducing the
need for explanatory comments. If a name for a loop is very difficult to choose, this could
indicate a need for more thought about the algorithm.

Regularly naming loops helps you follow Guideline 5.1.3. Even in the face of code changes,
for example, adding an outer or inner loop, the exit statement does not become ambiguous.

It can be difficult to think up a name for every loop; therefore, the guideline specifies nested
loops. The benefits in readability and second thought outweigh the inconvenience of naming
the loops.

6.2.2 Block Names
guideline
• Associate names with blocks when they are nested.

example
Trip:

declare

94

Optional Parts of the Syntax

...
begin -- Trip

Arrive_At_Airport:
declare

...
begin -- Arrive_At_Airport

Rent_Car;
Claim_Baggage;
Reserve_Hotel;
...

end Arrive_At_Airport;
Visit_Customer:

declare
...

begin -- Visit_Customer
-- again a set of activities...
...

end Visit_Customer;
Departure_Preparation:

declare
...

begin -- Departure_Preparation
Return_Car;
Check_Baggage;
Wait_For_Flight;
...

end Departure_Preparation;
Board_Return_Flight;

end Trip;

rationale
When there is a nested block structure, it can be difficult to determine which end
corresponds to which block. Naming blocks alleviates this confusion. The choice of a good
name for the block documents its purpose, reducing the need for explanatory comments. If
a name for the block is very difficult to choose, this could indicate a need for more thought
about the algorithm.

This guideline is also useful if nested blocks are broken over a screen or page boundary.

It can be difficult to think up a name for each block; therefore, the guideline specifies
nested blocks. The benefits in readability and second thought outweigh the inconvenience
of naming the blocks.

6.2.3 Exit Statements
guideline
• Use loop names on all exit statements from nested loops.

example
See the example in 5.1.1 .

95

Programming Practices

rationale
An exitstatement is an implicit goto. It should specify its source explicitly. When there is
a nested loop structure and an exitstatement is used, it can be difficult to determine which
loop is being exited. Also, future changes that may introduce a nested loop are likely to
introduce an error, with the exit accidentally exiting from the wrong loop. Naming loops
and their exits alleviates this confusion. This guideline is also useful if nested loops are
broken over a screen or page boundary.

6.2.4 Naming End Statements
guideline
• Include the defining program unit name at the end of a package specification and body.
• Include the defining identifier at the end of a task specification and body.
• Include the entry identifier at the end of an acceptstatement.
• Include the designator at the end of a subprogram body.
• Include the defining identifier at the end of a protected unit declaration.

example
--
package Autopilot is

function Is_Engaged return Boolean;
procedure Engage;
procedure Disengage;

end Autopilot;
--
package body Autopilot is

...

task Course_Monitor is

entry Reset (Engage : in Boolean);
end Course_Monitor;

function Is_Engaged return Boolean is
...
end Is_Engaged;

procedure Engage is
...
end Engage;

procedure Disengage is
...
end Disengage;

task body Course_Monitor is
...

accept Reset (Engage : in Boolean) do
...

96

Parameter Lists

end Reset;
...
end Course_Monitor;

end Autopilot;
--

rationale
Repeating names on the end of these compound statements ensures consistency throughout
the code. In addition, the named endprovides a reference for the reader if the unit spans a
page or screen boundary or if it contains a nested unit.

6.3 Parameter Lists
A subprogram or entry parameter list is the interface to the abstraction implemented by the
subprogram or entry. It is important that it is clear and that it is expressed in a consistent
style. Careful decisions about formal parameter naming and ordering can make the purpose
of the subprogram easier to understand, which can make it easier to use.

6.3.1 Formal Parameters
guideline
• Name formal parameters descriptively to reduce the need for comments.

example
List_Manager.Insert (Element => New_Employee,

Into_List => Probationary_Employees,
At_Position => 1);

rationale
Following the variable naming guidelines (3.2.1 and 3.2.3) for formal parameters can make
calls to subprograms read more like regular prose, as shown in the example above, where
no comments are necessary. Descriptive names of this sort can also make the code in the
body of the subprogram more clear.

97

Programming Practices

6.3.2 Named Association
guideline
• Use named parameter association in calls of infrequently used subprograms or entries
with many formal parameters.

• Use named association when instantiating generics.
• Use named association for clarification when the actual parameter is any literal or ex-
pression.

• Use named association when supplying a nondefault value to an optional parameter.

instantiation
• Use named parameter association in calls of subprograms or entries called from less than
five places in a single source file or with more than two formal parameters.

example
Encode_Telemetry_Packet (Source => Power_Electronics,

Content => Temperature,
Value =>

Read_Temperature_Sensor(Power_Electronics),
Time => Current_Time,
Sequence => Next_Packet_ID,
Vehicle => This_Spacecraft,
Primary_Module => True);

rationale
Calls of infrequently used subprograms or entries with many formal parameters can be
difficult to understand without referring to the subprogram or entry code. Named parameter
association can make these calls more readable.

When the formal parameters have been named appropriately, it is easier to determine exactly
what purpose the subprogram serves without looking at its code. This reduces the need for
named constants that exist solely to make calls more readable. It also allows variables used
as actual parameters to be given names indicating what they are without regard to why
they are being passed in a call. An actual parameter, which is an expression rather than a
variable, cannot be named otherwise.

Named association allows subprograms to have new parameters inserted with minimal ram-
ifications to existing calls.

notes
The judgment of when named parameter association improves readability is subjective.
Certainly, simple or familiar subprograms, such as a swap routine or a sine function, do not
require the extra clarification of named association in the procedure call.

98

Parameter Lists

caution
A consequence of named parameter association is that the formal parameter names may
not be changed without modifying the text of each call.

6.3.3 Default Parameters
guideline
• Provide default parameters to allow for occasional, special use of widely used subprograms
or entries.

• Place default parameters at the end of the formal parameter list.
• Consider providing default values to new parameters added to an existing subprogram.

example
Ada Reference Manual (1995) contains many examples of this practice.

rationale
Often, the majority of uses of a subprogram or entry need the same value for a given param-
eter. Providing that value, as the default for the parameter, makes the parameter optional
on the majority of calls. It also allows the remaining calls to customize the subprogram or
entry by providing different values for that parameter.

Placing default parameters at the end of the formal parameter list allows the caller to
use positional association on the call; otherwise, defaults are available only when named
association is used.

Often during maintenance activities, you increase the functionality of a subprogram or entry.
This requires more parameters than the original form for some calls. New parameters may
be required to control this new functionality. Give the new parameters default values that
specify the old functionality. Calls needing the old functionality need not be changed; they
take the defaults. This is true if the new parameters are added to the end of the parameter
list, or if named association is used on all calls. New calls needing the new functionality
can specify that by providing other values for the new parameters.

This enhances maintainability in that the places that use the modified routines do not
themselves have to be modified, while the previous functionality levels of the routines are
allowed to be ”reused.”

99

Programming Practices

exceptions
Do not go overboard. If the changes in functionality are truly radical, you should be
preparing a separate routine rather than modifying an existing one. One indicator of this
situation would be that it is difficult to determine value combinations for the defaults that
uniquely and naturally require the more restrictive of the two functions. In such cases, it is
better to go ahead with creation of a separate routine.

6.3.4 Mode Indication
guideline
• Show the mode indication of all procedure and entry parameters (Nissen and Wallis 1984
).

• Use the most restrictive parameter mode applicable to your application.

example
procedure Open_File (File_Name : in String;

Open_Status : out Status_Codes);
entry Acquire (Key : in Capability;

Resource : out Tape_Drive);

rationale
By showing the mode of parameters, you aid the reader. If you do not specify a parameter
mode, the default mode is in. Explicitly showing the mode indication of all parameters is
a more assertive action than simply taking the default mode. Anyone reviewing the code
later will be more confident that you intended the parameter mode to be in.

Use the mode that reflects the actual use of the parameter. You should avoid the tendency
to make all parameters in outmode because out mode parameters may be examined as
well as updated.

exceptions
It may be necessary to consider several alternative implementations for a given abstraction.
For example, a bounded stack can be implemented as a pointer to an array. Even though
an update to the object being pointed to does not require changing the pointer value itself,
you may want to consider making the mode in out to allow changes to the implementation
and to document more accurately what the operation is doing. If you later change the

100

Types

implementation to a simple array, the mode will have to be in out, potentially causing
changes to all places that the routine is called.

6.4 Types
In addition to determining the possible values for variables and subtype names, type dis-
tinctions can be very valuable aids in developing safe, readable, and understandable code.
Types clarify the structure of your data and can limit or restrict the operations performed
on that data. ”Keeping types distinct has been found to be a very powerful means of detect-
ing logical mistakes when a program is written and to give valuable assistance whenever the
program is being subsequently maintained” (Pyle 1985). Take advantage of Ada's strong
typing capability in the form of subtypes, derived types, task types, protected types, private
types, and limited private types.

The guidelines encourage much code to be written to ensure strong typing. While it might
appear that there would be execution penalties for this amount of code, this is usually
not the case. In contrast to other conventional languages, Ada has a less direct relationship
between the amount of code that is written and the size of the resulting executable program.
Most of the strong type checking is performed at compilation time rather than execution
time, so the size of the executable code is not greatly affected.

For guidelines on specific kinds of data structures and tagged types, see 9.2.1 , respectively.

6.4.1 Derived Types and Subtypes
guideline
• Use existing types as building blocks by deriving new types from them.
• Use range constraints on subtypes.
• Define new types, especially derived types, to include the largest set of possible values,
including boundary values.

• Constrain the ranges of derived types with subtypes, excluding boundary values.
• Use type derivation rather than type extension when there are no meaningful components
to add to the type.

example
Type Table is a building block for the creation of new types:
type Table is

record
Count : List_Size := Empty;
List : Entry_List := Empty_List;

end record;

101

Programming Practices

type Telephone_Directory is new Table;
type Department_Inventory is new Table;

The following are distinct types that cannot be intermixed in operations that are not pro-
grammed explicitly to use them both:
type Dollars is new Number;
type Cents is new Number;

Below, Source_Tail has a value outside the range of Listing_Paperwhen the line is empty.
All the indices can be mixed in expressions, as long as the results fall within the correct
subtypes:
type Columns is range First_Column - 1 .. Listing_Width + 1;

subtype Listing_Paper is Columns range First_Column .. Listing_Width;
subtype Dumb_Terminal is Columns range First_Column .. Dumb_Terminal_Width;
type Line is array (Columns range <>) of Bytes;
subtype Listing_Line is Line (Listing_Paper);
subtype Terminal_Line is Line (Dumb_Terminal);
Source_Tail : Columns := Columns'First;
Source : Listing_Line;
Destination : Terminal_Line;
...
Destination(Destination'First .. Source_Tail - Destination'Last) :=

Source(Columns'Succ(Destination'Last) .. Source_Tail);

rationale
The name of a derived type can make clear its intended use and avoid proliferation of
similar type definitions. Objects of two derived types, even though derived from the same
type, cannot be mixed in operations unless such operations are supplied explicitly or one is
converted to the other explicitly. This prohibition is an enforcement of strong typing.

Define new types, derived types, and subtypes cautiously and deliberately. The concepts of
subtype and derived type are not equivalent, but they can be used to advantage in concert.
A subtype limits the range of possible values for a type but does not define a new type.

Types can have highly constrained sets of values without eliminating useful values. Used
in concert, derived types and subtypes can eliminate many flag variables and type conver-
sions within executable statements. This renders the program more readable, enforces the
abstraction, and allows the compiler to enforce strong typing constraints.

Many algorithms begin or end with values just outside the normal range. If boundary values
are not compatible within subexpressions, algorithms can be needlessly complicated. The
program can become cluttered with flag variables and special cases when it could just test
for zero or some other sentinel value just outside normal range.

The type Columns and the subtype Listing_Paperin the example above demonstrate how
to allow sentinel values. The subtype Listing_Paper could be used as the type for parame-
ters of subprograms declared in the specification of a package. This would restrict the range

102

Types

of values that could be specified by the caller. Meanwhile, the type Columns could be used
to store such values internally to the body of the package, allowing First_Column - 1 to
be used as a sentinel value. This combination of types and subtypes allows compatibility
between subtypes within subexpressions without type conversions as would happen with
derived types.

The choice between type derivation and type extension depends on what kind of changes
you expect to occur to objects in the type. In general, type derivation is a very simple form
of inheritance: the derived types inherit the structure, operations, and values of the parent
type (Rationale 1995, §4.2). Although you can add operations, you cannot augment the
data structure. You can derive from either scalar or composite types.

Type extension is a more powerful form of inheritance, only applied to tagged records, in
which you can augment both the type's components and operations. When the record im-
plements an abstraction with the potential for reuse and/or extension, it is a good candidate
for making it tagged. Similarly, if the abstraction is a member of a family of abstractions
with well-defined variable and common properties, you should consider a tagged record.

notes
The price of the reduction in the number of independent type declarations is that subtypes
and derived types change when the base type is redefined. This trickle-down of changes is
sometimes a blessing and sometimes a curse. However, usually it is intended and beneficial.

6.4.2 Anonymous Types
guideline
• Avoid anonymous array types.
• Use anonymous array types for array variables only when no suitable type exists or can
be created and the array will not be referenced as a whole (e.g., used as a subprogram
parameter).

• Use access parameters and access discriminants to guarantee that the parameter or dis-
criminant is treated as a constant.

example
Use:
type Buffer_Index is range 1 .. 80;
type Buffer is array (Buffer_Index) of Character;
Input_Line : Buffer;

rather than:

103

Programming Practices

Input_Line : array (Buffer_Index) of Character;

rationale
Although Ada allows anonymous types, they have limited usefulness and complicate pro-
gram modification. For example, except for arrays, a variable of anonymous type can never
be used as an actual parameter because it is not possible to define a formal parameter of
the same type. Even though this may not be a limitation initially, it precludes a modifi-
cation in which a piece of code is changed to a subprogram. Although you can declare the
anonymous array to be aliased, you cannot use this access value as an actual parameter
in a subprogram because the subprogram's formal parameter declaration requires a type
mark. Also, two variables declared using the same anonymous type declaration are actually
of different types.

Even though the implicit conversion of array types during parameter passing is supported
in Ada, it is difficult to justify not using the type of the parameter. In most situations,
the type of the parameter is visible and easily substituted in place of an anonymous array
type. The use of an anonymous array type implies that the array is only being used as a
convenient way to implement a collection of values. It is misleading to use an anonymous
type, and then treat the variable as an object.

When you use an access parameter or access discriminant, the anonymous type is essentially
declared inside the subprogram or object itself (Rationale 1995, §3.7.1). Thus, you have no
way of declaring another object of the same type, and the object is treated as a constant.
In the case of a self-referential data structure (see Guideline 5.4.6), you need the access
parameter to be able to manipulate the data the discriminant accesses (Rationale 1995,
§3.7.1).

notes
For anonymous task types, see Guideline 6.1.4 .

exceptions
If you are creating a unique table, for example, the periodic table of the elements, consider
using an anonymous array type.

104

Types

6.4.3 Private Types
guideline
• Derive from controlled types in preference to using limited private types.
• Use limited private types in preference to private types.
• Use private types in preference to nonprivate types.
• Explicitly export needed operations rather than easing restrictions.

example
--
with Ada.Finalization;
package Packet_Telemetry is

type Frame_Header is new Ada.Finalization.Controlled with private;
type Frame_Data is private;
type Frame_Codes is (Main_Bus_Voltage, Transmitter_1_Power);
...

private
type Frame_Header is new Ada.Finalization.Controlled with

record
...

end record;
-- override adjustment and finalization to get correct assignment semantics
procedure Adjust (Object : in out Frame_Header);
procedure Finalize (Object : in out Frame_Header);
type Frame_Data is

record
...

end record;
...

end Packet_Telemetry;
--

rationale
Limited private types and private types support abstraction and information hiding better
than nonprivate types. The more restricted the type, the better information hiding is
served. This, in turn, allows the implementation to change without affecting the rest of
the program. While there are many valid reasons to export types, it is better to try the
preferred route first, loosening the restrictions only as necessary. If it is necessary for a user
of the package to use a few of the restricted operations, it is better to export the operations
explicitly and individually via exported subprograms than to drop a level of restriction.
This practice retains the restrictions on other operations.

Limited private types have the most restricted set of operations available to users of a
package. Of the types that must be made available to users of a package, as many as
possible should be derived from the controlled types or limited private. Controlled types
give you the ability to adjust assignment and to finalize values, so you no longer need to
create limited private types to guarantee a client that assignment and equality obey deep
copy/comparison semantics. Therefore, it is possible to export a slightly less restrictive type

105

Programming Practices

(i.e., private type that extends Ada.Finalization.Controlled) that has an adjustable
assignment operator and overridable equality operator. See also Guideline 5.4.5 .

The operations available to limited private types are membership tests, selected components,
components for the selections of any discriminant, qualification and explicit conversion, and
attributes 'Baseand 'Size. Objects of a limited private type also have the attribute
'Constrainedif there are discriminants. None of these operations allows the user of the
package to manipulate objects in a way that depends on the structure of the type.

notes
The predefined packages Direct_IO and Sequential_IOdo not accept limited private types
as generic parameters. This restriction should be considered when I/O operations are needed
for a type.

See Guideline 8.3.3 for a discussion of the use of private and limited private types in generic
units.

6.4.4 Subprogram Access Types
guideline
• Use access-to-subprogram types for indirect access to subprograms.
• Wherever possible, use abstract tagged types and dispatching rather than access-to-
subprogram types to implement dynamic selection and invocation of subprograms.

example
The following example is taken from the Rationale (1995, §3.7.2) :
generic

type Float_Type is digits <>;
package Generic_Integration is

type Integrand is access function (X : Float_Type) return Float_Type;
function Integrate (F : Integrand;

From : Float_Type;
To : Float_Type;
Accuracy : Float_Type := 10.0*Float_Type'Model_Epsilon)

return Float_Type;
end Generic_Integration;
with Generic_Integration;
procedure Try_Estimate (External_Data : in Data_Type;

Lower : in Float;
Upper : in Float;
Answer : out Float) is

-- external data set by other means
function Residue (X : Float) return Float is

Result : Float;
begin -- Residue

106

Data Structures

-- compute function value dependent upon external data
return Result;

end Residue;
package Float_Integration is

new Generic_Integration (Float_Type => Float);

use Float_Integration;
begin -- Try_Estimate

...
Answer := Integrate (F => Residue'Access,

From => Lower,
To => Upper);

end Try_Estimate;

rationale
Access-to-subprogram types allow you to create data structures that contain subprogram
references. There are many uses for this feature, for instance, implementing state machines,
call backs in the X Window System, iterators (the operation to be applied to each element
of a list), and numerical algorithms (e.g., integration function) (Rationale 1995, §3.7.2).

You can achieve the same effect as access-to-subprogram types for dynamic selection by
using abstract tagged types. You declare an abstract type with one abstract operation and
then use an access-to-class-wide type to get the dispatching effect. This technique provides
greater flexibility and type safety than access-to-subprogram types (Ada Reference Manual
1995, §3.10.2 1 [Annotated2]).

Access-to-subprogram types are useful in implementing dynamic selection. References to
the subprograms can be stored directly in the data structure. In a finite state machine, for
example, a single data structure can describe the action to be taken on state transitions.
Strong type checking is maintained because Ada 95 requires that the designated subprogram
has the same parameter/result profile as the one specified in the subprogram access type.

See also Guideline 7.3.2 .

6.5 Data Structures
The data structuring capabilities of Ada are a powerful resource; therefore, use them to
model the data as closely as possible. It is possible to group logically related data and let
the language control the abstraction and operations on the data rather than requiring the
programmer or maintainer to do so. Data can also be organized in a building block fashion.
In addition to showing how a data structure is organized (and possibly giving the reader an
indication as to why it was organized that way), creating the data structure from smaller

1 http://www.adaic.com/standards/95lrm/html/RM-3-10-2.html

107

http://www.adaic.com/standards/95lrm/html/RM-3-10-2.html

Programming Practices

components allows those components to be reused. Using the features that Ada provides
can increase the maintainability of your code.

6.5.1 Discriminated Records
guideline
• When declaring a discriminant, use as constrained a subtype as possible (i.e., subtype
with as specific a range constraint as possible).

• Use a discriminated record rather than a constrained array to represent an array whose
actual values are unconstrained.

example
An object of type Name_Holder_1 could potentially hold a string whose length is
Natural'Last:
type Number_List is array (Integer range <>) of Integer;

type Number_Holder_1 (Current_Length : Natural := 0) is
record

Numbers : Number_List (1 .. Current_Length);
end record;

An object of type Name_Holder_2 imposes a more reasonable restriction on the length of
its string component:
type Number_List is array (Integer range <>) of Integer;
subtype Max_Numbers is Natural range 0 .. 42;

type Number_Holder_2 (Current_Length : Max_Numbers := 0) is
record

Numbers : Number_List (1 .. Current_Length);
end record;

rationale
When you use the discriminant to constrain an array inside a discriminated record, the
larger the range of values the discriminant can assume, the more space an object of the
type might require. Although your program may compile and link, it will fail at execution
when the run-time system is unable to create an object of the potential size required.

The discriminated record captures the intent of an array whose bounds may vary at run-
time. A simple constrained array definition (e.g., type Number_List is array (1 .. 42)
of Integer;) does not capture the intent that there are at most 42 possible numbers in
the list.

108

Data Structures

6.5.2 Heterogeneous Related Data
guideline
• Use records to group heterogeneous but related data.
• Consider records to map to I/O device data.

example
type Propulsion_Method is (Sail, Diesel, Nuclear);
type Craft is

record
Name : Common_Name;
Plant : Propulsion_Method;
Length : Feet;
Beam : Feet;
Draft : Feet;

end record;
type Fleet is array (1 .. Fleet_Size) of Craft;

rationale
You help the maintainer find all of the related data by gathering it into the same construct,
simplifying any modifications that apply to all rather than part. This, in turn, increases
reliability. Neither you nor an unknown maintainer is liable to forget to deal with all
the pieces of information in the executable statements, especially if updates are done with
aggregate assignments whenever possible.

The idea is to put the information a maintainer needs to know where it can be found with the
minimum of effort. For example, if all information relating to a given Craft is in the same
place, the relationship is clear both in the declarations and especially in the code accessing
and updating that information. But, if it is scattered among several data structures, it is
less obvious that this is an intended relationship as opposed to a coincidental one. In the
latter case, the declarations may be grouped together to imply intent, but it may not be
possible to group the accessing and updating code that way. Ensuring the use of the same
index to access the corresponding element in each of several parallel arrays is difficult if the
accesses are at all scattered.

If the application must interface directly to hardware, the use of records, especially in
conjunction with record representation clauses, could be useful to map onto the layout of
the hardware in question.

notes
It may seem desirable to store heterogeneous data in parallel arrays in what amounts to a
FORTRAN-like style. This style is an artifact of FORTRAN's data structuring limitations.
FORTRAN only has facilities for constructing homogeneous arrays.

109

Programming Practices

exceptions
If the application must interface directly to hardware, and the hardware requires that infor-
mation be distributed among various locations, then it may not be possible to use records.

6.5.3 Heterogeneous Polymorphic Data
guideline
• Use access types to class-wide types to implement heterogeneous polymorphic data struc-
tures.

• Use tagged types and type extension rather than variant records (in combination with
enumeration types and case statements).

example
An array of type Employee_List can contain pointers to part-time and full-time employees
(and possibly other kinds of employees in the future):

--
package Personnel is

type Employee is tagged limited private;
type Reference is access all Employee'Class;
...

private
...

end Personnel;

--
with Personnel;
package Part_Time_Staff is

type Part_Time_Employee is new Personnel.Employee with
record

...
end record;

...
end Part_Time_Staff;

--
with Personnel;
package Full_Time_Staff is

type Full_Time_Employee is new Personnel.Employee with
record

...
end record;

...
end Full_Time_Staff;

--

...

type Employee_List is array (Positive range <>) of Personnel.Reference;

Current_Employees : Employee_List (1..10);

110

Data Structures

...

Current_Employees(1) := new Full_Time_Staff.Full_Time_Employee;
Current_Employees(2) := new Part_Time_Staff.Part_Time_Employee;
...

rationale
Polymorphism is a means of factoring out the differences among a collection of abstractions
so that programs may be written in terms of the common properties. Polymorphism allows
the different objects in a heterogeneous data structure to be treated the same way, based on
dispatching operations defined on the root tagged type. This eliminates the need for case
statements to select the processing required for each specific type. Guideline 5.6.3 discusses
the maintenance impact of using case statements.

Enumeration types, variant records, and case statements are hard to maintain because the
expertise on a given variant of the data type tends to be spread all over the program.
When you create a tagged type hierarchy (tagged types and type extension), you can avoid
the variant records, case statement, and single enumeration type that only supports the
variant record discriminant. Moreover, you localize the ”expertise” about the variant within
the data structure by having all the corresponding primitives for a single operation call
common ”operation-specific”code.

See also Guideline 9.2.1 for a more detailed discussion of tagged types.

exceptions
In some instances, you may want to use a variant record approach to organize modularity
around operations. For graphic output, for example, you may find it more maintainable to
use variant records. You must make the tradeoff of whether adding a new operation will be
less work than adding a new variant.

6.5.4 Nested Records
guideline
• Record structures should not always be flat. Factor out common parts.
• For a large record structure, group related components into smaller subrecords.
• For nested records, pick element names that read well when inner elements are referenced.
• Consider using type extension to organize large data structures.

111

Programming Practices

example
type Coordinate is

record
Row : Local_Float;
Column : Local_Float;

end record;
type Window is

record
Top_Left : Coordinate;
Bottom_Right : Coordinate;

end record;

rationale
You can make complex data structures understandable and comprehensible by composing
them of familiar building blocks. This technique works especially well for large record
types with parts that fall into natural groupings. The components factored into separately
declared records, based on a common quality or purpose, correspond to a lower level of
abstraction than that represented by the larger record.

When designing a complex data structure, you must consider whether type composition or
type extension is the best suited technique. Type composition refers to creating a record
component whose type is itself a record. You will often need a hybrid of these techniques,
that is, some components you include through type composition and others you create
through type extension. Type extension may provide a cleaner design if the ”intermediate”
records are all instances of the same abstraction family. See also Guidelines 5.4.2 and 9.2.1
.

notes
A carefully chosen name for the component of the larger record that is used to select the
smaller enhances readability, for example:
if Window1.Bottom_Right.Row > Window2.Top_Left.Row then . . .

6.5.5 Dynamic Data
guideline
• Differentiate between static and dynamic data. Use dynamically allocated objects with
caution.

• Use dynamically allocated data structures only when it is necessary to create and destroy
them dynamically or to be able to reference them by different names.

• Do not drop pointers to undeallocated objects.
• Do not leave dangling references to deallocated objects.

112

Data Structures

• Initialize all access variables and components within a record.
• Do not rely on memory deallocation.
• Deallocate explicitly.
• Use length clauses to specify total allocation size.
• Provide handlers for Storage_Error.
• Use controlled types to implement private types that manipulate dynamic data.
• Avoid unconstrained record objects unless your run-time environment reliably reclaims
dynamic heap storage.

• Unless your run-time environment reliably reclaims dynamic heap storage, declare the fol-
lowing items only in the outermost, unnested declarative part of either a library package,
a main subprogram, or a permanent task:
• Access types
• Constrained composite objects with nonstatic bounds
• Objects of an unconstrained composite type other than unconstrained records
• Composite objects large enough (at compile time) for the compiler to allocate implicitly
on the heap

• Unless your run-time environment reliably reclaims dynamic heap storage or you are
creating permanent, dynamically allocated tasks, avoid declaring tasks in the following
situations:
• Unconstrained array subtypes whose components are tasks
• Discriminated record subtypes containing a component that is an array of tasks, where
the array size depends on the value of the discriminant

• Any declarative region other than the outermost, unnested declarative part of either a
library package or a main subprogram

• Arrays of tasks that are not statically constrained

example
These lines show how a dangling reference might be created:
P1 := new Object;
P2 := P1;
Unchecked_Object_Deallocation(P2);

This line can raise an exception due to referencing the deallocated object:
X := P1.all;

In the following three lines, if there is no intervening assignment of the value of P1 to any
other pointer, the object created on the first line is no longer accessible after the third line.
The only pointer to the allocated object has been dropped:
P1 := new Object;
...
P1 := P2;

The following code shows an example of using Finalizeto make sure that when an object
is finalized (i.e., goes out of scope), the dynamically allocated elements are chained on a
free list:

113

Programming Practices

with Ada.Finalization;
package List is

type Object is private;
function "=" (Left, Right : Object) return Boolean; --

element-by-element comparison
... -- Operations go here

private
type Handle is access List.Object;
type Object is new Ada.Finalization.Controlled with

record
Next : List.Handle;
... -- Useful information go here

end record;
procedure Adjust (L : in out List.Object);
procedure Finalize (L : in out List.Object);

end List;
package body List is

Free_List : List.Handle;
...
procedure Adjust (L : in out List.Object) is
begin

L := Deep_Copy (L);
end Adjust;
procedure Finalize (L : in out List.Object) is
begin

-- Chain L to Free_List
end Finalize;

end List;

rationale
See also 6.3.2 for variations on these problems. A dynamically allocated object is an object
created by the execution of an allocator (new). Allocated objects referenced by access
variables allow you to generate aliases , which are multiple references to the same object.
Anomalous behavior can arise when you reference a deallocated object by another name.
This is called a dangling reference. Totally disassociating a still-valid object from all names
is called dropping a pointer. A dynamically allocated object that is not associated with a
name cannot be referenced or explicitly deallocated.

A dropped pointer depends on an implicit memory manager for reclamation of space. It also
raises questions for the reader as to whether the loss of access to the object was intended
or accidental.

An Ada environment is not required to provide deallocation of dynamically allocated objects.
If provided, it may be provided implicitly (objects are deallocated when their access type
goes out of scope), explicitly (objects are deallocated when Ada.Unchecked_Deallocation
is called), or both. To increase the likelihood of the storage space being reclaimed, it is
best to call Ada.Unchecked_Deallocationexplicitly for each dynamically created object
when you are finished using it. Calls to Ada.Unchecked_Deallocation also document a
deliberate decision to abandon an object, making the code easier to read and understand.
To be absolutely certain that space is reclaimed and reused, manage your own ”free list.”
Keep track of which objects you are finished with, and reuse them instead of dynamically
allocating new objects later.

114

Data Structures

The dangers of dangling references are that you may attempt to use them, thereby accessing
memory that you have released to the memory manager and that may have been subse-
quently allocated for another purpose in another part of your program. When you read
from such memory, unexpected errors may occur because the other part of your program
may have previously written totally unrelated data there. Even worse, when you write to
such memory you can cause errors in an apparently unrelated part of the code by changing
values of variables dynamically allocated by that code. This type of error can be very diffi-
cult to find. Finally, such errors may be triggered in parts of your environment that you did
not write, for example, in the memory management system itself, which may dynamically
allocate memory to keep records about your dynamically allocated memory.

Keep in mind that any unreset component of a record or array can also be a dangling
reference or carry a bit pattern representing inconsistent data. Components of an access
type are always initialized by default to null; however, you should not rely on this de-
fault initialization. To enhance readability and maintainability, you should include explicit
initialization.

Whenever you use dynamic allocation, it is possible to run out of space. Ada provides a
facility (a length clause) for requesting the size of the pool of allocation space at compile
time. Anticipate that you can still run out at run time. Prepare handlers for the exception
Storage_Error, and consider carefully what alternatives you may be able to include in the
program for each such situation.

There is a school of thought that dictates avoidance of all dynamic allocation. It is largely
based on the fear of running out of memory during execution. Facilities, such as length
clauses and exception handlers for Storage_Error, provide explicit control over memory
partitioning and error recovery, making this fear unfounded.

When implementing a complex data structure (tree, list, sparse matrices, etc.), you often
use access types. If you are not careful, you can consume all your storage with these
dynamically allocated objects. You could export a deallocate operation, but it is impossible
to ensure that it is called at the proper places; you are, in effect, trusting the clients. If
you derive from controlled types (see 8.3.3 , and 9.2.3 for more information), you can use
finalization to deal with deallocation of dynamic data, thus avoiding storage exhaustion.
User-defined storage pools give better control over the allocation policy.

A related but distinct issue is that of shared versus copy semantics: even if the data structure
is implemented using access types, you do not necessarily want shared semantics. In some
instances you really want := to create a copy, not a new reference, and you really want
= to compare the contents, not the reference. You should implement your structure as a
controlled type. If you want copy semantics, you can redefine Adjustto perform a deep
copy and = to perform a comparison on the contents. You can also redefine Finalize to
make sure that when an object is finalized (i.e., goes out of scope) the dynamically allocated
elements are chained on a free list (or deallocated by Ada.Unchecked_Deallocation).

The implicit use of dynamic (heap) storage by an Ada program during execution poses
significant risks that software failures may occur. An Ada run-time environment may use
implicit dynamic (heap) storage in association with composite objects, dynamically created
tasks, and catenation. Often, the algorithms used to manage the dynamic allocation and
reclamation of heap storage cause fragmentation or leakage, which can lead to storage
exhaustion. It is usually very difficult or impossible to recover from storage exhaustion

115

Programming Practices

or Storage_Error without reloading and restarting the Ada program. It would be very
restrictive to avoid all uses of implicit allocation. On the other hand, preventing both
explicit and implicit deallocation significantly reduces the risks of fragmentation and leakage
without overly restricting your use of composite objects, access values, task objects, and
catenation.

exceptions
If a composite object is large enough to be allocated on the heap, you can still declare it
as an in or in outformal parameter. The guideline is meant to discourage declaring the
object in an object declaration, a formal out parameter, or the value returned by a function.

You should monitor the leakage and/or fragmentation from the heap. If they become steady-
state and do not continually increase during program or partition execution, you can use
the constructs described in the guidelines.

6.5.6 Aliased Objects
guideline
• Minimize the use of aliased variables.
• Use aliasing for statically created, ragged arrays (Rationale 1995, §3.7.1).
• Use aliasing to refer to part of a data structure when you want to hide the internal
connections and bookkeeping information.

example
package Message_Services is

type Message_Code_Type is range 0 .. 100;
subtype Message is String;
function Get_Message (Message_Code: Message_Code_Type)
return Message;

pragma Inline (Get_Message);
end Message_Services;
package body Message_Services is

type Message_Handle is access constant Message;
Message_0 : aliased constant Message := "OK";
Message_1 : aliased constant Message := "Up";
Message_2 : aliased constant Message := "Shutdown";
Message_3 : aliased constant Message := "Shutup";
. . .
type Message_Table_Type is array (Message_Code_Type) of Message_Handle;

Message_Table : Message_Table_Type :=
(0 => Message_0'Access,
1 => Message_1'Access,
2 => Message_2'Access,
3 => Message_3'Access,
-- etc.

116

Data Structures

);
function Get_Message (Message_Code : Message_Code_Type)

return Message is
begin

return Message_Table (Message_Code).all;
end Get_Message;

end Message_Services;

The following code fragment shows a use of aliased objects, using the attribute 'Access to
implement a generic component that manages hashed collections of objects:
generic

type Hash_Index is mod <>;
type Object is tagged private;
type Handle is access all Object;
with function Hash (The_Object : in Object) return Hash_Index;

package Collection is
function Insert (Object : in Collection.Object) return Collection.Handle;
function Find (Object : in Collection.Object) return Collection.Handle;
Object_Not_Found : exception;

...
private

type Cell;
type Access_Cell is access Cell;

end Collection;
package body Collection is

type Cell is
record

Value : aliased Collection.Object;
Link : Access_Cell;

end record;
type Table_Type is array (Hash_Index) of Access_Cell;

Table : Table_Type;
-- Go through the collision chain and return an access to the useful data.
function Find (Object : in Collection.Object;

Index : in Hash_Index) return Handle is
Current : Access_Cell := Table (Index);

begin
while Current /= null loop

if Current.Value = Object then
return Current.Value'Access;

else
Current := Current.Link;

end if;
end loop;
raise Object_Not_Found;

end Find;
-- The exported one
function Find (Object : in Collection.Object) return Collection.Handle is

Index : constant Hash_Index := Hash (Object);
begin

return Find (Object, Index);
end Find;
...

end Collection;

rationale
Aliasing allows the programmer to have indirect access to declared objects. Because you
can update aliased objects through more than one path, you must exercise caution to avoid

117

Programming Practices

unintended updates. When you restrict the aliased objects to being constant, you avoid
having the object unintentionally modified. In the example above, the individual message
objects are aliased constant message strings so their values cannot be changed. The ragged
array is then initialized with references to each of these constant strings.

Aliasing allows you to manipulate objects using indirection while avoiding dynamic alloca-
tion. For example, you can insert an object onto a linked list without dynamically allocating
the space for that object (Rationale 1995, §3.7.1).

Another use of aliasing is in a linked data structure in which you try to hide the enclosing
container. This is essentially the inverse of a self-referential data structure (see Guideline
5.4.7). If a package manages some data using a linked data structure, you may only want
to export access values that denote the ”useful”data. You can use an access-to-object to
return an access to the useful data, excluding the pointers used to chain objects.

6.5.7 Access Discriminants
guideline
• Use access discriminants to create self-referential data structures, i.e., a data structure
one of whose components points to the enclosing structure.

example
See the examples in Guidelines 8.3.6 (using access discriminants to build an iterator) and
9.5.1 (using access discriminants in multiple inheritance).

rationale
The access discriminant is essentially a pointer of an anonymous type being used as a
discriminant. Because the access discriminant is of an anonymous access type, you cannot
declare other objects of the type. Thus, once you initialize the discriminant, you create a
”permanent” (for the lifetime of the object) association between the discriminant and the
object it accesses. When you create a self-referential structure, that is, a component of the
structure is initialized to point to the enclosing object, the ”constant” behavior of the access
discriminant provides the right behavior to help you maintain the integrity of the structure.

See also Rationale (1995, §4.6.3) for a discussion of access discriminants to achieve multiple
views of an object.

See also Guideline 6.1.3 for an example of an access discriminant for a task type.

118

Expressions

6.5.8 Modular Types
guideline
• Use modular types rather than Boolean arrays when you create data structures that need
bit-wise operations, such as and and or.

example
with Interfaces;
procedure Main is

type Unsigned_Byte is mod 255;

X : Unsigned_Byte;
Y : Unsigned_Byte;
Z : Unsigned_Byte;
X1 : Interfaces.Unsigned_16;

begin -- Main
Z := X or Y; -- does not cause overflow

-- Show example of left shift
X1 := 16#FFFF#;
for Counter in 1 .. 16 loop

X1 := Interfaces.Shift_Left (Value => X1, Amount => 1);
end loop;

end Main;

rationale
Modular types are preferred when the number of bits is known to be fewer than the number
of bits in a word and/or performance is a serious concern. Boolean arrays are appropriate
when the number of bits is not particularly known in advance and performance is not a
serious issue. See also Guideline 10.6.3 .

6.6 Expressions
Properly coded expressions can enhance the readability and understandability of a program.
Poorly coded expressions can turn a program into a maintainer's nightmare.

6.6.1 Range Values
guideline
• Use 'First or 'Last instead of numeric literals to represent the first or last values of a
range.

• Use 'Range or the subtype name of the range instead of 'First .. 'Last.

119

Programming Practices

example
type Temperature is range All_Time_Low .. All_Time_High;
type Weather_Stations is range 1 .. Max_Stations;
Current_Temperature : Temperature := 60;
Offset : Temperature;
...
for I in Weather_Stations loop

Offset := Current_Temperature - Temperature'First;
...

end loop;

rationale
In the example above, it is better to use Weather_Stationsin the for loop than
to use Weather_Stations'First .. Weather_Stations'Last or 1 .. Max_Stations
because it is clearer, less error-prone, and less dependent on the definition of the type
Weather_Stations. Similarly, it is better to use Temperature'First in the offset calcula-
tion than to use All_Time_Low because the code will still be correct if the definition of the
subtype Temperature is changed. This enhances program reliability.

caution
When you implicitly specify ranges and attributes like this, be careful that you use the
correct subtype name. It is easy to refer to a very large range without realizing it. For
example, given the declarations:
type Large_Range is new Integer;
subtype Small_Range is Large_Range range 1 .. 10;

type Large_Array is array (Large_Range) of Integer;
type Small_Array is array (Small_Range) of Integer;

then the first declaration below works fine, but the second one is probably an accident and
raises an exception on most machines because it is requesting a huge array (indexed from
the smallest integer to the largest one):
Array_1 : Small_Array;
Array_2 : Large_Array;

6.6.2 Array Attributes
guideline
• Use array attributes 'First, 'Last, or 'Length instead of numeric literals for accessing
arrays.

• Use the 'Range of the array instead of the name of the index subtype to express a range.

120

Expressions

• Use 'Range instead of 'First .. 'Last to express a range.

example
subtype Name_String is String (1 .. Name_Length);
File_Path : Name_String := (others => ' ');
...
for I in File_Path'Range loop

...
end loop;

rationale
In the example above, it is better to use Name_String'Rangein the for loop than to
use Name_String_Size, Name_String'First .. Name_String'Last, or 1 .. 30because
it is clearer, less error-prone, and less dependent on the definitions of Name_String and
Name_String_Size. If Name_String is changed to have a different index type or if the
bounds of the array are changed, this will still work correctly. This enhances program
reliability.

6.6.3 Parenthetical Expressions
guideline
• Use parentheses to specify the order of subexpression evaluation to clarify expressions
(NASA 1987).

• Use parentheses to specify the order of evaluation for subexpressions whose correctness
depends on left to right evaluation.

example
(1.5 * X**2)/A - (6.5*X + 47.0)
2*I + 4*Y + 8*Z + C

rationale
The Ada rules of operator precedence are defined in the Ada Reference Manual 1995, §4.5
3 [Annotated4] and follow the same commonly accepted precedence of algebraic operators.

3 http://www.adaic.com/standards/95lrm/html/RM-4-5.html

121

http://www.adaic.com/standards/95lrm/html/RM-4-5.html

Programming Practices

The strong typing facility in Ada combined with the common precedence rules make many
parentheses unnecessary. However, when an uncommon combination of operators occurs, it
may be helpful to add parentheses even when the precedence rules apply. The expression:
5 + ((Y ** 3) mod 10)

is clearer, and equivalent to:
5 + Y**3 mod 10

The rules of evaluation do specify left to right evaluation for operators with the same
precedence level. However, it is the most commonly overlooked rule of evaluation when
checking expressions for correctness.

6.6.4 Positive Forms of Logic
guideline
• Avoid names and constructs that rely on the use of negatives.
• Choose names of flags so they represent states that can be used in positive form.

example
Use:
if Operator_Missing then

rather than either:
if not Operator_Found then

or:
if not Operator_Missing then

rationale
Relational expressions can be more readable and understandable when stated in a positive
form. As an aid in choosing the name, consider that the most frequently used branch in a
conditional construct should be encountered first.

122

Expressions

exceptions
There are cases in which the negative form is unavoidable. If the relational expression better
reflects what is going on in the code, then inverting the test to adhere to this guideline is
not recommended.

6.6.5 Short Circuit Forms of the Logical Operators
guideline
• Use short-circuit forms of the logical operators to specify the order of conditions when
the failure of one condition means that the other condition will raise an exception.

example
Use:
if Y /= 0 or else (X/Y) /= 10 then

or:
if Y /= 0 then

if (X/Y) /= 10 then

rather than either:
if Y /= 0 and (X/Y) /= 10 then

or:
if (X/Y) /= 10 then

to avoid Constraint_Error.

Use:
if Target /= null and then Target.Distance < Threshold then

rather than:
if Target.Distance < Threshold then

to avoid referencing a field in a nonexistent object.

123

Programming Practices

rationale
The use of short-circuit control forms prevents a class of data-dependent errors or exceptions
that can occur as a result of expression evaluation. The short-circuit forms guarantee an
order of evaluation and an exit from the sequence of relational expressions as soon as the
expression's result can be determined.

In the absence of short-circuit forms, Ada does not provide a guarantee of the order of
expression evaluation, nor does the language guarantee that evaluation of a relational ex-
pression is abandoned when it becomes clear that it evaluates to False (for and) or True
(for or).

notes
If it is important that all parts of a given expression always be evaluated, the expression
probably violates Guideline 4.1.4 , which limits side-effects in functions.

6.6.6 Accuracy of Operations With Real Operands
guideline
• Use <= and >= in relational expressions with real operands instead of =.

example
Current_Temperature : Temperature := 0.0;
Temperature_Increment : Temperature := 1.0 / 3.0;
Maximum_Temperature : constant := 100.0;
...
loop

...
Current_Temperature :=

Current_Temperature + Temperature_Increment;
...
exit when Current_Temperature >= Maximum_Temperature;
...

end loop;

rationale
Fixed- and floating-point values, even if derived from similar expressions, may not be exactly
equal. The imprecise, finite representations of real numbers in hardware always have round-
off errors so that any variation in the construction path or history of two real numbers

124

Statements

has the potential for resulting in different numbers, even when the paths or histories are
mathematically equivalent.

The Ada definition of model intervals also means that the use of <= is more portable than
either < or =.

notes
Floating-point arithmetic is treated in Guideline 7.2.7 .

exceptions
If your application must test for an exact value of a real number (e.g., testing the precision
of the arithmetic on a certain machine), then the = would have to be used. But never use
=on real operands as a condition to exit a loop .

6.7 Statements
Careless or convoluted use of statements can make a program hard to read and maintain
even if its global structure is well organized. You should strive for simple and consistent use
of statements to achieve clarity of local program structure. Some of the guidelines in this
section counsel use or avoidance of particular statements. As pointed out in the individual
guidelines, rigid adherence to those guidelines would be excessive, but experience has shown
that they generally lead to code with improved reliability and maintainability.

6.7.1 Nesting
guideline
• Minimize the depth of nested expressions (Nissen and Wallis 1984).
• Minimize the depth of nested control structures (Nissen and Wallis 1984).
• Try using simplification heuristics (see the following Notes).

instantiation
• Do not nest expressions or control structures beyond a nesting level of five.

125

Programming Practices

example
The following section of code:
if not Condition_1 then

if Condition_2 then
Action_A;

else -- not Condition_2
Action_B;

end if;
else -- Condition_1

Action_C;
end if;

can be rewritten more clearly and with less nesting as:
if Condition_1 then

Action_C;
elsif Condition_2 then

Action_A;
else -- not (Condition_1 or Condition_2)

Action_B;
end if;

rationale
Deeply nested structures are confusing, difficult to understand, and difficult to maintain.
The problem lies in the difficulty of determining what part of a program is contained at
any given level. For expressions, this is important in achieving the correct placement of
balanced grouping symbols and in achieving the desired operator precedence. For control
structures, the question involves what part is controlled. Specifically, is a given statement
at the proper level of nesting, that is, is it too deeply or too shallowly nested, or is the
given statement associated with the proper choice, for example, for if or case statements?
Indentation helps, but it is not a panacea. Visually inspecting alignment of indented code
(mainly intermediate levels) is an uncertain job at best. To minimize the complexity of the
code, keep the maximum number of nesting levels between three and five.

notes
Ask yourself the following questions to help you simplify the code:

• Can some part of the expression be put into a constant or variable?
• Does some part of the lower nested control structures represent a significant and, perhaps,
reusable computation that I can factor into a subprogram ?

126

Statements

• Can I convert these nested if statements into a case statement?
• Am I using else if where I could be using elsif?
• Can I reorder the conditional expressions controlling this nested structure?
• Is there a different design that would be simpler?

exceptions
If deep nesting is required frequently, there may be overall design decisions for the code that
should be changed. Some algorithms require deeply nested loops and segments controlled
by conditional branches. Their continued use can be ascribed to their efficiency, familiarity,
and time-proven utility. When nesting is required, proceed cautiously and take special care
with the choice of identifiers and loop and block names.

6.7.2 Slices
guideline
• Use slices rather than a loop to copy part of an array.

example
First : constant Index := Index'First;
Second : constant Index := Index'Succ(First);
Third : constant Index := Index'Succ(Second);
type Vector is array (Index range <>) of Element;
subtype Column_Vector is Vector (Index);
type Square_Matrix is array (Index) of Column_Vector;
subtype Small_Range is Index range First .. Third;
subtype Diagonals is Vector (Small_Range);
type Tri_Diagonal is array (Index) of Diagonals;
Markov_Probabilities : Square_Matrix;
Diagonal_Data : Tri_Diagonal;
...
-- Remove diagonal and off diagonal elements.
Diagonal_Data(Index'First)(First) := Null_Value;
Diagonal_Data(Index'First)(Second .. Third) :=

Markov_Probabilities(Index'First)(First .. Second);
for I in Second .. Index'Pred(Index'Last) loop

Diagonal_Data(I) :=
Markov_Probabilities(I)(Index'Pred(I) .. Index'Succ(I));

end loop;
Diagonal_Data(Index'Last)(First .. Second) :=

Markov_Probabilities(Index'Last)(Index'Pred(Index'Last) .. Index'Last);
Diagonal_Data(Index'Last)(Third) := Null_Value;

127

Programming Practices

rationale
An assignment statement with slices is simpler and clearer than a loop and helps the reader
see the intended action. See also Guideline 10.5.7 regarding possible performance issues of
slice assignments versus loops.

6.7.3 Case Statements
guideline
• Minimize the use of an others choice in a case statement.
• Do not use ranges of enumeration literals in case statements.
• Use case statements rather than if/elsif statements, wherever possible.
• Use type extension and dispatching rather than case statements if, possible.

example
type Color is (Red, Green, Blue, Purple);
Car_Color : Color := Red;
...
case Car_Color is

when Red .. Blue => ...
when Purple => ...

end case; -- Car_Color

Now consider a change in the type:
type Color is (Red, Yellow, Green, Blue, Purple);

This change may have an unnoticed and undesired effect in the case statement. If the
choices had been enumerated explicitly, as when Red | Green | Blue => instead of when
Red .. Blue =>, then the case statement would not have compiled. This would have
forced the maintainer to make a conscious decision about what to do in the case of Yellow.

In the following example, assume that a menu has been posted, and the user is expected
to enter one of the four choices. Assume that User_Choice is declared as a Characterand
that Terminal_IO.Get handles errors in user input. The less readable alternative with the
if/elsif statement is shown after the case statement:
Do_Menu_Choices_1:

loop
...

case User_Choice is
when 'A' => Item := Terminal_IO.Get ("Item to add");
when 'D' => Item := Terminal_IO.Get ("Item to delete");
when 'M' => Item := Terminal_IO.Get ("Item to modify");
when 'Q' => exit Do_Menu_Choices_1;

when others => -- error has already been signaled to user
null;

end case;

128

Statements

end loop Do_Menu_Choices_1;

Do_Menu_Choices_2:
loop

...

if User_Choice = 'A' then
Item := Terminal_IO.Get ("Item to add");

elsif User_Choice = 'D' then
Item := Terminal_IO.Get ("Item to delete");

elsif User_Choice = 'M' then
Item := Terminal_IO.Get ("Item to modify");

elsif User_Choice = 'Q' then
exit Do_Menu_Choices_2;

end if;
end loop Do_Menu_Choices_2;

rationale
All possible values for an object should be known and should be assigned specific actions.
Use of an others clause may prevent the developer from carefully considering the actions
for each value. A compiler warns the user about omitted values if an others clause is not
used.

You may not be able to avoid the use of others in a casestatement when the subtype of
the case expression has many values, for example, universal_integer, Wide_Character
, or Character). If your choice of values is small compared to the range of the subtype,
you should consider using an if/elsifstatement. Note that you must supply an others
alternative when your case expression is of a generic type.

Each possible value should be explicitly enumerated. Ranges can be dangerous because of
the possibility that the range could change and the case statement may not be reexamined.
If you have declared a subtype to correspond to the range of interest, you can consider using
this named subtype.

In many instances, case statements enhance the readability of the code. See Guideline
10.5.3 for a discussion of the performance considerations. In many implementations, case
statements may be more efficient.

Type extension and dispatching ease the maintenance burden when you add a new variant
to a data structure. See also Guidelines 5.4.2 and 5.4.4 .

129

Programming Practices

notes
Ranges that are needed in case statements can use constrained subtypes to enhance main-
tainability. It is easier to maintain because the declaration of the range can be placed where
it is logically part of the abstraction, not buried in a case statement in the executable code:
subtype Lower_Case is Character range 'a' .. 'z';
subtype Upper_Case is Character range 'A' .. 'Z';
subtype Control is Character range Ada.Characters.Latin_1.NUL ..

Ada.Characters.Latin_1.US;
subtype Numbers is Character range '0' .. '9';
...
case Input_Char is

when Lower_Case => Capitalize(Input_Char);
when Upper_Case => null;
when Control => raise Invalid_Input;
when Numbers => null;
...

end case;

exceptions
It is acceptable to use ranges for possible values only when the user is certain that new
values will never be inserted among the old ones, as for example, in the range of ASCII
characters: 'a' .. 'z'.

6.7.4 Loops
guideline
• Use for loops, whenever possible.
• Use while loops when the number of iterations cannot be calculated before entering the
loop but a simple continuation condition can be applied at the top of the loop.

• Use plain loops with exit statements for more complex situations.
• Avoid exit statements in while and for loops.
• Minimize the number of ways to exit a loop.

example
To iterate over all elements of an array:
for I in Array_Name'Range loop

...
end loop;

To iterate over all elements in a linked list:

130

Statements

Pointer := Head_Of_List;
while Pointer /= null loop

...
Pointer := Pointer.Next;

end loop;

Situations requiring a ”loop and a half” arise often. For this, use:
P_And_Q_Processing:

loop
P;
exit P_And_Q_Processing when Condition_Dependent_On_P;
Q;

end loop P_And_Q_Processing;

rather than:
P;
while not Condition_Dependent_On_P loop

Q;
P;

end loop;

rationale
A for loop is bounded, so it cannot be an ”infinite loop.” This is enforced by the Ada
language, which requires a finite range in the loop specification and does not allow the
loop counter of a forloop to be modified by a statement executed within the loop. This
yields a certainty of understanding for the reader and the writer not associated with other
forms of loops. A for loop is also easier to maintain because the iteration range can be
expressed using attributes of the data structures upon which the loop operates, as shown
in the example above where the range changes automatically whenever the declaration of
the array is modified. For these reasons, it is best to use the for loop whenever possible,
that is, whenever simple expressions can be used to describe the first and last values of the
loop counter.

The while loop has become a very familiar construct to most programmers. At a glance, it
indicates the condition under which the loop continues. Use the while loop whenever it is
not possible to use the for loop but when there is a simple Boolean expression describing
the conditions under which the loop should continue, as shown in the example above.

The plain loop statement should be used in more complex situations, even if it is possible
to contrive a solution using a for or while loop in conjunction with extra flag variables or
exit statements. The criteria in selecting a loop construct are to be as clear and maintain-
able as possible. It is a bad idea to use an exit statement from within a for or while loop
because it is misleading to the reader after having apparently described the complete set
of loop conditions at the top of the loop. A reader who encounters a plain loop statement
expects to see exit statements.

There are some familiar looping situations that are best achieved with the plain loop state-
ment. For example, the semantics of the Pascal repeat untilloop, where the loop is
always executed at least once before the termination test occurs, are best achieved by a

131

Programming Practices

plain loop with a single exit at the end of the loop. Another common situation is the ”loop
and a half” construct, shown in the example above, where a loop must terminate somewhere
within the sequence of statements of the body. Complicated ”loop and a half” constructs
simulated with while loops often require the introduction of flag variables or duplication
of code before and during the loop, as shown in the example. Such contortions make the
code more complex and less reliable.

Minimize the number of ways to exit a loop to make the loop more understandable to the
reader. It should be rare that you need more than two exit paths from a loop. When you
do, be sure to use exit statements for all of them, rather than adding an exit statement
to a for or while loop.

6.7.5 Exit Statements
guideline
• Use exit statements to enhance the readability of loop termination code (NASA 1987).
• Use exit when ... rather than if ... then exitwhenever possible (NASA 1987).
• Review exit statement placement.

example
See the examples in Guidelines 5.1.1 and Guidelines 5.6.4.

rationale
It is more readable to use exit statements than to try to add Boolean flags to a while
loop condition to simulate exits from the middle of a loop. Even if all exit statements
would be clustered at the top of the loop body, the separation of a complex condition into
multiple exit statements can simplify and make it more readable and clear. The sequential
execution of two exit statements is often more clear than the short-circuit control forms.

The exit when form is preferable to the if ... then exit form because it makes the
word exit more visible by not nesting it inside of any control construct. The if ... then
exit form is needed only in the case where other statements, in addition to the exit
statement, must be executed conditionally. For example:
Process_Requests:

loop
if Status = Done then

Shut_Down;
exit Process_Requests;

end if;

...

end loop Process_Requests;

132

Statements

Loops with many scattered exit statements can indicate fuzzy thinking regarding the loop's
purpose in the algorithm. Such an algorithm might be coded better some other way, for ex-
ample, with a series of loops. Some rework can often reduce the number of exit statements
and make the code clearer.

See also Guidelines 5.1.3 and 5.6.4.

6.7.6 Recursion and Iteration Bounds
guideline
• Consider specifying bounds on loops .
• Consider specifying bounds on recursion .

example
Establishing an iteration bound:
Safety_Counter := 0;
Process_List:

loop
exit when Current_Item = null;
...
Current_Item := Current_Item.Next;
...
Safety_Counter := Safety_Counter + 1;
if Safety_Counter > 1_000_000 then

raise Safety_Error;
end if;

end loop Process_List;

Establishing a recursion bound:
subtype Recursion_Bound is Natural range 0 .. 1_000;

procedure Depth_First (Root : in Tree;
Safety_Counter : in Recursion_Bound

:= Recursion_Bound'Last) is
begin

if Root /= null then
if Safety_Counter = 0 then

raise Recursion_Error;
end if;
Depth_First (Root => Root.Left_Branch,

Safety_Counter => Safety_Counter - 1);

Depth_First (Root => Root.Right_Branch,
Safety_Counter => Safety_Counter - 1);

... -- normal subprogram body
end if;

end Depth_First;

Following are examples of this subprogram's usage. One call specifies a maximum recursion
depth of 50. The second takes the default (1,000). The third uses a computed bound:

133

Programming Practices

Depth_First(Root => Tree_1, Safety_Counter => 50);
Depth_First(Tree_2);
Depth_First(Root => Tree_3, Safety_Counter => Current_Tree_Height);

rationale
Recursion, and iteration using structures other than for statements, can be infinite because
the expected terminating condition does not arise. Such faults are sometimes quite subtle,
may occur rarely, and may be difficult to detect because an external manifestation might
be absent or substantially delayed.

By including counters and checks on the counter values, in addition to the loops themselves,
you can prevent many forms of infinite loops. The inclusion of such checks is one aspect of
the technique called Safe Programming (Anderson and Witty 1978).

The bounds of these checks do not have to be exact, just realistic. Such counters and
checks are not part of the primary control structure of the program but a benign addition
functioning as an execution-time ”safety net,” allowing error detection and possibly recovery
from potential infinite loops or infinite recursion.

notes
If a loop uses the for iteration scheme (Guideline 5.6.4), it follows this guideline.

exceptions
Embedded control applications have loops that are intended to be infinite. Only a few
loops within such applications should qualify as exceptions to this guideline. The exceptions
should be deliberate (and documented) policy decisions.

This guideline is most important to safety critical systems. For other systems, it may be
overkill.

6.7.7 Goto Statements
guideline
Do not use goto statements.

rationale
A goto statement is an unstructured change in the control flow. Worse, the label does not
require an indicator of where the corresponding goto statement(s) are. This makes code
unreadable and makes its correct execution suspect.

134

Statements

Other languages use goto statements to implement loop exits and exception handling. Ada's
support of these constructs makes the goto statement extremely rare.

notes
If you should ever use a goto statement, highlight both it and the label with blank space.
Indicate at the label where the corresponding goto statement(s) may be found.

6.7.8 Return Statements
guideline
• Minimize the number of returnstatements from a subprogram (NASA 1987).
• Highlight returnstatements with comments or white space to keep them from being lost
in other code.

example
The following code fragment is longer and more complex than necessary:
if Pointer /= null then

if Pointer.Count > 0 then
return True;

else -- Pointer.Count = 0
return False;

end if;
else -- Pointer = null

return False;
end if;

It should be replaced with the shorter, more concise, and clearer equivalent line:
return Pointer /= null and then Pointer.Count > 0;

rationale
Excessive use of returns can make code confusing and unreadable. Only use return
statements where warranted. Too many returns from a subprogram may be an indica-
tor of cluttered logic. If the application requires multiple returns, use them at the same
level (i.e., as in different branches of a case statement), rather than scattered throughout
the subprogram code. Some rework can often reduce the number of return statements to
one and make the code more clear.

exceptions
Do not avoid return statements if it detracts from natural structure and code readability.

135

Programming Practices

6.7.9 Blocks
guideline
• Use blocks to localize the scope of declarations.
• Use blocks to perform local renaming.
• Use blocks to define local exception handlers.

example
with Motion;
with Accelerometer_Device;
...

function Maximum_Velocity return Motion.Velocity is

Cumulative : Motion.Velocity := 0.0;

begin -- Maximum_Velocity

-- Initialize the needed devices
...

Calculate_Velocity_From_Sample_Data:
declare

use type Motion.Acceleration;

Current : Motion.Acceleration := 0.0;
Time_Delta : Duration;

begin -- Calculate_Velocity_From_Sample_Data
for I in 1 .. Accelerometer_Device.Sample_Limit loop

Get_Samples_And_Ignore_Invalid_Data:
begin

Accelerometer_Device.Get_Value(Current, Time_Delta);
exception

when Constraint_Error =>
null; -- Continue trying

when Accelerometer_Device.Failure =>
raise Accelerometer_Device_Failed;

end Get_Samples_And_Ignore_Invalid_Data;

exit when Current <= 0.0; -- Slowing down

Update_Velocity:
declare

use type Motion.Velocity;
use type Motion.Acceleration;

begin
Cumulative := Cumulative + Current * Time_Delta;

exception
when Constraint_Error =>

raise Maximum_Velocity_Exceeded;
end Update_Velocity;

136

Statements

end loop;
end Calculate_Velocity_From_Sample_Data;

return Cumulative;

end Maximum_Velocity;

...

rationale
Blocks break up large segments of code and isolate details relevant to each subsection of
code. Variables that are only used in a particular section of code are clearly visible when a
declarative block delineates that code.

Renaming may simplify the expression of algorithms and enhance readability for a given
section of code. But it is confusing when a renames clause is visually separated from the
code to which it applies. The declarative region allows the renames to be immediately
visible when the reader is examining code that uses that abbreviation. Guideline 5.7.1
discusses a similar guideline concerning the use clause.

Local exception handlers can catch exceptions close to the point of origin and allow them
to be either handled, propagated, or converted.

6.7.10 Aggregates
guideline
• Use an aggregate instead of a sequence of assignments to assign values to all components
of a record.

• Use an aggregate instead of a temporary variable when building a record to pass as an
actual parameter.

• Use positional association only when there is a conventional ordering of the arguments.

example
It is better to use aggregates:
Set_Position((X, Y));
Employee_Record := (Number => 42,

Age => 51,
Department => Software_Engineering);

than to use consecutive assignments or temporary variables:
Temporary_Position.X := 100;
Temporary_Position.Y := 200;
Set_Position(Temporary_Position);
Employee_Record.Number := 42;
Employee_Record.Age := 51;
Employee_Record.Department := Software_Engineering;

137

Programming Practices

rationale
Using aggregates during maintenance is beneficial. If a record structure is altered, but
the corresponding aggregate is not, the compiler flags the missing field in the aggregate
assignment. It would not be able to detect the fact that a new assignment statement should
have been added to a list of assignment statements.

Aggregates can also be a real convenience in combining data items into a record or array
structure required for passing the information as a parameter. Named component associa-
tion makes aggregates more readable.

See Guideline 10.4.5 for the performance impact of aggregates.

6.8 Visibility
As noted in Guideline 4.2, Ada's ability to enforce information hiding and separation of
concerns through its visibility controlling features is one of the most important advantages
of the language. Subverting these features, for example, by too liberal use of the use clause,
is wasteful and dangerous.

6.8.1 The Use Clause
guideline
• When you need to provide visibility to operators, use the use type clause.
• Avoid/minimize the use of the use clause (Nissen and Wallis 1984).
• Consider using a package renames clause rather than a use clause for a package.
• Consider using the use clause in the following situations:
• When standard packages are needed and no ambiguous references are introduced
• When references to enumeration literals are needed

• Localize the effect of all use clauses.

example
This is a modification of the example from Guideline 4.2.3. The effect of a use clause is
localized:
--
--
package Rational_Numbers is

type Rational is private;
function "=" (X, Y : Rational) return Boolean;
function "/" (X, Y : Integer) return Rational; -- construct a rational

138

Visibility

number
function "+" (X, Y : Rational) return Rational;
function "-" (X, Y : Rational) return Rational;
function "*" (X, Y : Rational) return Rational;
function "/" (X, Y : Rational) return Rational; -- rational division

private
...

end Rational_Numbers;
--
--
package body Rational_Numbers is

procedure Reduce (R : in out Rational) is . . . end Reduce;
. . .

end Rational_Numbers;
--
--
package Rational_Numbers.IO is

...

procedure Put (R : in Rational);
procedure Get (R : out Rational);

end Rational_Numbers.IO;
--
--
with Rational_Numbers;
with Rational_Numbers.IO;
with Ada.Text_IO;
procedure Demo_Rationals is

package R_IO renames Rational_Numbers.IO;

use type Rational_Numbers.Rational;
use R_IO;
use Ada.Text_IO;

X : Rational_Numbers.Rational;
Y : Rational_Numbers.Rational;

begin -- Demo_Rationals
Put ("Please input two rational numbers: ");
Get (X);
Skip_Line;
Get (Y);
Skip_Line;
Put ("X / Y = ");
Put (X / Y);
New_Line;
Put ("X * Y = ");
Put (X * Y);
New_Line;
Put ("X + Y = ");
Put (X + Y);
New_Line;
Put ("X - Y = ");
Put (X - Y);
New_Line;

end Demo_Rationals;

rationale
These guidelines allow you to maintain a careful balance between maintainability and read-
ability. Use of the use clause may indeed make the code read more like prose text. However,
the maintainer may also need to resolve references and identify ambiguous operations. In

139

Programming Practices

the absence of tools to resolve these references and identify the impact of changing use
clauses, fully qualified names are the best alternative.

Avoiding the use clause forces you to use fully qualified names. In large systems, there may
be many library units named in with clauses. When corresponding use clauses accompany
the with clauses and the simple names of the library packages are omitted (as is allowed by
the use clause), references to external entities are obscured and identification of external
dependencies becomes difficult.

In some situations, the benefits of the use clause are clear. A standard package can be used
with the obvious assumption that the reader is very familiar with those packages and that
additional overloading will not be introduced.

The use type clause makes both infix and prefix operators visible without the need for
renames clauses. You enhance readability with the use type clause because you can write
statements using the more natural infix notation for operators. See also Guideline 5.7.2.

You can minimize the scope of the use clause by placing it in the body of a package or
subprogram or by encapsulating it in a block to restrict visibility.

notes
Avoiding the use clause completely can cause problems with enumeration literals, which
must then be fully qualified. This problem can be solved by declaring constants with the
enumeration literals as their values, except that such constants cannot be overloaded like
enumeration literals.

An argument defending the use clause can be found in Rosen (1987).

automation notes
There are tools that can analyze your Ada source code, resolve overloading of names, and
automatically convert between the use clause or fully qualified names.

6.8.2 The Renames Clause
guideline
• Limit the scope of a renaming declaration to the minimum necessary scope.
• Rename a long, fully qualified name to reduce the complexity if it becomes unwieldy (see
Guideline 3.1.4).

• Use renaming to provide the body of a subprogram if this subprogram merely calls the
first subprogram.

• Rename declarations for visibility purposes rather than using the use clause, except for
operators (see Guideline 5.7.1).

• Rename parts when your code interfaces to reusable components originally written with
nondescriptive or inapplicable nomenclature.

• Use a project-wide standard list of abbreviations to rename common packages.

140

Visibility

• Provide a use type rather than a renames clause to provide visibility to operators.

example
procedure Disk_Write (Track_Name : in Track;

Item : in Data) renames
System_Specific.Device_Drivers.Disk_Head_Scheduler.Transmit;

See also the example in Guideline 5.7.1, where a package-level renames clause provides an
abbreviation for the package Rational_Numbers_IO.

rationale
If the renaming facility is abused, the code can be difficult to read. A renames clause can
substitute an abbreviation for a qualifier or long package name locally. This can make code
more readable yet anchor the code to the full name. You can use the renames clause to
evaluate a complex name once or to provide a new ”view” of an object (regardless of whether
it is tagged). However, the use of renames clauses can often be avoided or made obviously
undesirable by carefully choosing names so that fully qualified names read well.

When a subprogram body calls another subprogram without adding local data or other
algorithmic content, it is more readable to have this subprogram body rename the subpro-
gram that actually does the work. Thus, you avoid having to write code to ”pass through”
a subprogram call (Rationale 1995, §II.12).

The list of renaming declarations serves as a list of abbreviation definitions (see Guideline
3.1.4). As an alternative, you can rename a package at the library level to define project-
wide abbreviations for packages and then with the renamed packages. Often the parts
recalled from a reuse library do not have names that are as general as they could be or that
match the new application's naming scheme. An interface package exporting the renamed
subprograms can map to your project's nomenclature. See also Guideline 5.7.1.

The method described in the Ada Reference Manual 1995, §8.5 5 [Annotated6] for renaming
a type is to use a subtype (see Guideline 3.4.1).

The use type clause eliminates the need for renaming infix operators. Because you no
longer need to rename each operator explicitly, you avoid errors such as renaming a + to a
-. See also Guideline 5.7.1.

notes
You should choose package names to be minimally meaningful, recognizing that package
names will be widely used as prefixes (e.g., Pkg.Operation or Object : Pkg.Type_Name;
). If you rename every package to some abbreviation, you defeat the purpose of choosing
meaningful names, and it becomes hard to keep track of what all the abbreviations represent.

For upward compatibility of Ada 83 programs in an Ada 95 environment, the environment
includes library-level renamings of the Ada 83 library level packages (Ada Reference Manual

5 http://www.adaic.com/standards/95lrm/html/RM-8-5.html

141

http://www.adaic.com/standards/95lrm/html/RM-8-5.html

Programming Practices

1995, §J.1 7 [Annotated8]). It is not recommended that you use these renamings in Ada 95
code.

6.8.3 Overloaded Subprograms
guideline
Limit overloading to widely used subprograms that perform similar actions on arguments
of different types (Nissen and Wallis 1984).

example
function Sin (Angles : in Matrix_Of_Radians) return Matrix;
function Sin (Angles : in Vector_Of_Radians) return Vector;
function Sin (Angle : in Radians) return Small_Real;
function Sin (Angle : in Degrees) return Small_Real;

rationale
Excessive overloading can be confusing to maintainers (Nissen and Wallis 1984, 65). There
is also the danger of hiding declarations if overloading becomes habitual. Attempts to
overload an operation may actually hide the original operation if the parameter profile is
not distinct. From that point on, it is not clear whether invoking the new operation is
what the programmer intended or whether the programmer intended to invoke the hidden
operation and accidentally hid it.

notes
This guideline does not prohibit subprograms with identical names declared in different
packages.

6.8.4 Overloaded Operators
guideline
• Preserve the conventional meaning of overloaded operators (Nissen and Wallis 1984).
• Use ”+” to identify adding, joining, increasing, and enhancing kinds of functions.
• Use ”-” to identify subtraction, separation, decreasing, and depleting kinds of functions.
• Use operator overloading sparingly and uniformly when applied to tagged types.

7 http://www.adaic.com/standards/95lrm/html/RM-J-1.html

142

http://www.adaic.com/standards/95lrm/html/RM-J-1.html

Visibility

example
function "+" (X : in Matrix;

Y : in Matrix)
return Matrix;

...
Sum := A + B;

rationale
Subverting the conventional interpretation of operators leads to confusing code.

The advantage of operator overloading is that the code can become more clear and written
more compactly (and readably) when it is used. This can make the semantics simple and
natural. However, it can be easy to misunderstand the meaning of an overloaded operator,
especially when applied to descendants. This is especially true if the programmer has not
applied natural semantics. Thus, do not use overloading if it cannot be used uniformly and
if it is easily misunderstood.

notes
There are potential problems with any overloading. For example, if there are several ver-
sions of the "+" operator and a change to one of them affects the number or order of its
parameters, locating the occurrences that must be changed can be difficult.

6.8.5 Overloading the Equality Operator
guideline
• Define an appropriate equality operator for private types.
• Consider redefining the equality operator for a private type.
• When overloading the equality operator for types, maintain the properties of an algebraic
equivalence relation.

rationale
The predefined equality operation provided with private types depends on the data structure
chosen to implement that type . If access types are used, then equality will mean the
operands have the same pointer value. If discrete types are used, then equality will mean
the operands have the same value. If a floating- point type is used, then equality is based
on Ada model intervals (see Guideline 7.2.7). You should, therefore, redefine equality to
provide the meaning expected by the client. If you implement a private type using an access
type, you should redefine equality to provide a deep equality. For floating-point types, you
may want to provide an equality that tests for equality within some application-dependent
epsilon value.

Any assumptions about the meaning of equality for private types will create a dependency
on the implementation of that type. See Gonzalez (1991) for a detailed discussion.

143

Programming Practices

When the definition of ”=” is provided, there is a conventional algebraic meaning implied by
this symbol. As described in Baker (1991), the following properties should remain true for
the equality operator:

• • Reflexive: a = a
• Symmetric: a = b ==> b = a
• Transitive: a = b and b = c ==> a = c

In redefining equality, you are not required to have a result type of Standard.Boolean
. The Rationale (1995, §6.3) gives two examples where your result type is a user-defined
type. In a three-valued logic abstraction, you redefine equality to return one of True, False
, or Unknown. In a vector processing application, you can define a component-wise equality
operator that returns a vector of Boolean values. In both these instances, you should also
redefine inequality because it is not the Boolean complement of the equality function.

6.9 Using exceptions
Ada exceptions are a reliability-enhancing language feature designed to help specify program
behavior in the presence of errors or unexpected events. Exceptions are not intended to
provide a general purpose control construct. Further, liberal use of exceptions should not be
considered sufficient for providing full software fault tolerance (Melliar-Smith and Randell
1987).

This section addresses the issues of how and when to avoid raising exceptions, how and where
to handle them, and whether to propagate them. Information on how to use exceptions as
part of the interface to a unit includes what exceptions to declare and raise and under what
conditions to raise them. Other issues are addressed in the guidelines in Sections 4.3 and
7.5.

6.9.1 Handling Versus Avoiding Exceptions
guideline
• When it is easy and efficient to do so, avoid causing exceptions to be raised.
• Provide handlers for exceptions that cannot be avoided.
• Use exception handlers to enhance readability by separating fault handling from normal
execution.

• Do not use exceptions and exception handlers as goto statements.
• Do not evaluate the value of an object (or a part of an object) that has become abnormal
because of the failure of a language-defined check.

144

Using exceptions

rationale
In many cases, it is possible to detect easily and efficiently that an operation you are about
to perform would raise an exception. In such a case, it is a good idea to check rather
than allowing the exception to be raised and handling it with an exception handler. For
example, check each pointer for null when traversing a linked list of records connected
by pointers. Also, test an integer for 0 before dividing by it, and call an interrogative
function Stack_Is_Empty before invoking the pop procedure of a stack package. Such tests
are appropriate when they can be performed easily and efficiently as a natural part of the
algorithm being implemented.

However, error detection in advance is not always so simple. There are cases where such a
test is too expensive or too unreliable. In such cases, it is better to attempt the operation
within the scope of an exception handler so that the exception is handled if it is raised. For
example, in the case of a linked list implementation of a list, it is very inefficient to call
a function Entry_Exists before each call to the procedure Modify_Entry simply to avoid
raising the exception Entry_Not_Found. It takes as much time to search the list to avoid
the exception as it takes to search the list to perform the update. Similarly, it is much
easier to attempt a division by a real number within the scope of an exception handler to
handle numeric overflow than to test, in advance, whether the dividend is too large or the
divisor too small for the quotient to be representable on the machine.

In concurrent situations, tests done in advance can also be unreliable. For example, if you
want to modify an existing file on a multiuser system, it is safer to attempt to do so within
the scope of an exception handler than to test in advance whether the file exists, whether it
is protected, whether there is room in the file system for the file to be enlarged, etc. Even if
you tested for all possible error conditions, there is no guarantee that nothing would change
after the test and before the modification operation. You still need the exception handlers,
so the advance testing serves no purpose.

Whenever such a case does not apply, normal and predictable events should be handled by
the code without the abnormal transfer of control represented by an exception. When fault
handling and only fault handling code is included in exception handlers, the separation
makes the code easier to read. The reader can skip all the exception handlers and still
understand the normal flow of control of the code. For this reason, exceptions should never
be raised and handled within the same unit, as a form of a goto statement to exit from a
loop, if, case, or blockstatement.

Evaluating an abnormal object results in erroneous execution (Ada Reference Manual 1995,
§13.9.1 9 [Annotated10]). The failure of a language-defined check raises an exception. In the
corresponding exception handler, you want to perform appropriate cleanup actions, includ-
ing logging the error (see the discussion on exception occurrences in Guideline 5.8.2) and/or
reraising the exception. Evaluating the object that put you into the exception handling code
will lead to erroneous execution, where you do not know whether your exception handler
has executed completely or correctly. See also Guideline 5.9.1, which discusses abnormal
objects in the context of Ada.Unchecked_Conversion.

9 http://www.adaic.com/standards/95lrm/html/RM-13-9-1.html

145

http://www.adaic.com/standards/95lrm/html/RM-13-9-1.html

Programming Practices

6.9.2 Handlers for Others
guideline
• When writing an exception handler for others, capture and return additional in-
formation about the exception through the Exception_Name, Exception_Message
, or Exception_Information subprograms declared in the predefined package
Ada.Exceptions.

• Use others only to catch exceptions you cannot enumerate explicitly, preferably only to
flag a potential abort.

• During development, trap others, capture the exception being handled, and consider
adding an explicit handler for that exception.

example
The following simplified example gives the user one chance to enter an integer in the range 1
to 3. In the event of an error, it provides information back to the user. For an integer value
that is outside the expected range, the function reports the name of the exception. For any
other error, the function provides more complete traceback information. The amount of
traceback information is implementation dependent.
with Ada.Exceptions;
with Ada.Text_IO;
with Ada.Integer_Text_IO;
function Valid_Choice return Positive is

subtype Choice_Range is Positive range 1..3;

Choice : Choice_Range;
begin

Ada.Text_IO.Put ("Please enter your choice: 1, 2, or 3: ");
Ada.Integer_Text_IO.Get (Choice);
if Choice in Choice_Range then -- else garbage returned

return Choice;
end if;
when Out_of_Bounds : Constraint_Error =>

Ada.Text_IO.Put_Line ("Input choice not in range.");
Ada.Text_IO.Put_Line (Ada.Exceptions.Exception_Name (Out_of_Bounds));
Ada.Text_IO.Skip_Line;

when The_Error : others =>
Ada.Text_IO.Put_Line ("Unexpected error.");
Ada.Text_IO.Put_Line (Ada.Exceptions.Exception_Information (The_Error));
Ada.Text_IO.Skip_Line;

end Valid_Choice;

rationale
The predefined package Ada.Exceptions allows you to log an exception, including its name
and traceback information. When writing a handler for others, you should provide infor-
mation about the exception to facilitate debugging. Because you can access information
about an exception occurrence, you can save information suitable for later analysis in a

146

Using exceptions

standard way. By using exception occurrences, you can identify the particular exception
and either log the details or take corrective action.

Providing a handler for others allows you to follow the other guidelines in this section. It
affords a place to catch and convert truly unexpected exceptions that were not caught by
the explicit handlers. While it may be possible to provide ”fire walls” against unexpected
exceptions being propagated without providing handlers in every block, you can convert
the unexpected exceptions as soon as they arise. The others handler cannot discriminate
between different exceptions, and, as a result, any such handler must treat the exception as
a disaster. Even such a disaster can still be converted into a user-defined exception at that
point. Because a handler for others catches any exception not otherwise handled explicitly,
one placed in the frame of a task or of the main subprogram affords the opportunity to
perform final cleanup and to shut down cleanly.

Programming a handler for others requires caution. You should name it in the handler
(e.g., Error : others;) to discriminate either which exception was actually raised or pre-
cisely where it was raised. In general, the others handler cannot make any assumptions
about what can be or even what needs to be ”fixed.”

The use of handlers for others during development, when exception occurrences can be
expected to be frequent, can hinder debugging unless you take advantage of the facilities in
Ada.Exceptions. It is much more informative to the developer to see a traceback with the
actual exception information as captured by the Ada.Exceptions subprograms. Writing a
handler without these subprograms limits the amount of error information you may see.
For example, you may only see the converted exception in a traceback that does not list
the point where the original exception was raised.

notes
It is possible, but not recommended, to use Exception_Id to distinguish between different
exceptions in an others handler. The type Exception_Id is implementation defined. Ma-
nipulating values of type Exception_Id reduces the portability of your program and makes
it harder to understand.

6.9.3 Propagation
guideline
• Handle all exceptions, both user and predefined .
• For every exception that might be raised, provide a handler in suitable frames to protect
against undesired propagation outside the abstraction .

rationale
The statement that ”it can never happen” is not an acceptable programming approach. You
must assume it can happen and be in control when it does. You should provide defensive
code routines for the ”cannot get here” conditions.

147

Programming Practices

Some existing advice calls for catching and propagating any exception to the calling unit.
This advice can stop a program. You should catch the exception and propagate it or a
substitute only if your handler is at the wrong abstraction level to effect recovery. Effecting
recovery can be difficult, but the alternative is a program that does not meet its specification.

Making an explicit request for termination implies that your code is in control of the sit-
uation and has determined that to be the only safe course of action. Being in control
affords opportunities to shut down in a controlled manner (clean up loose ends, close files,
release surfaces to manual control, sound alarms) and implies that all available programmed
attempts at recovery have been made.

6.9.4 Localizing the Cause of an Exception
guideline
• Do not rely on being able to identify the fault-raising, predefined, or implementation-
defined exceptions.

• Use the facilities defined in Ada.Exceptions to capture as much information as possible
about an exception.

• Use blocks to associate localized sections of code with their own exception handlers.

example
See Guideline 5.6.9.

rationale
In an exception handler, it is very difficult to determine exactly which statement and
which operation within that statement raised an exception, particularly the predefined and
implementation-defined exceptions. The predefined and implementation-defined exceptions
are candidates for conversion and propagation to higher abstraction levels for handling
there. User-defined exceptions, being more closely associated with the application, are
better candidates for recovery within handlers.

User-defined exceptions can also be difficult to localize. Associating handlers with small
blocks of code helps to narrow the possibilities, making it easier to program recovery actions.
The placement of handlers in small blocks within a subprogram or task body also allows
resumption of the subprogram or task after the recovery actions. If you do not handle
exceptions within blocks, the only action available to the handlers is to shut down the task
or subprogram as prescribed in Guideline 5.8.3.

As discussed in Guideline 5.8.2, you can log run-time system information about the excep-
tion. You can also attach a message to the exception. During code development, debugging,
and maintenance, this information should be useful to localize the cause of the exception.

148

Erroneous execution and bounded errors

notes
The optimal size for the sections of code you choose to protect by a block and its exception
handlers is very application-dependent. Too small a granularity forces you to expend more
effort in programming for abnormal actions than for the normal algorithm. Too large a
granularity reintroduces the problems of determining what went wrong and of resuming
normal flow.

6.10 Erroneous execution and bounded errors
Ada 95 introduces the category of bounded errors. Bounded errors are cases where the
behavior is not deterministic but falls within well-defined bounds (Rationale 1995, §1.4).
The consequence of a bounded error is to limit the behavior of compilers so that an Ada
environment is not free to do whatever it wants in the presence of errors. The Ada Reference
Manual 1995, §1.1.5 11 [Annotated12] defines a set of possible outcomes for the consequences
of undefined behavior, as in an uninitialized value or a value outside the range of its subtype.
For example, the executing program may raise the predefined exception Program_Error,
Constraint_Error, or it may do nothing.

An Ada program is erroneous when it generates an error that is not required to be detected
by the compiler or run-time environments. As stated in the Ada Reference Manual 1995,
§1.1.5 13 [Annotated14], ”The effects of erroneous execution are unpredictable.” If the compiler
does detect an instance of an erroneous program, its options are to indicate a compile time
error; to insert the code to raise Program_Error, possibly to write a message to that effect;
or to do nothing at all.

Erroneousness is not a concept unique to Ada. The guidelines below describe or explain
some specific instances of erroneousness defined in the Ada Reference Manual 1995, §1.1.5
15 [Annotated16]. These guidelines are not intended to be all-inclusive but rather emphasize
some commonly overlooked problem areas. Arbitrary order dependencies are not, strictly
speaking, a case of erroneous execution; thus, they are discussed in Guideline 7.1.9 as a
portability issue.

11 http://www.adaic.com/standards/95lrm/html/RM-1-1-5.html
13 http://www.adaic.com/standards/95lrm/html/RM-1-1-5.html
15 http://www.adaic.com/standards/95lrm/html/RM-1-1-5.html

149

http://www.adaic.com/standards/95lrm/html/RM-1-1-5.html
http://www.adaic.com/standards/95lrm/html/RM-1-1-5.html
http://www.adaic.com/standards/95lrm/html/RM-1-1-5.html

Programming Practices

6.10.1 Unchecked Conversion
guideline
• Use Ada.Unchecked_Conversion only with the utmost care (Ada Reference Manual 1995,
§13.9 17 [Annotated18]).

• Consider using the 'Valid attribute to check the validity of scalar data.
• Ensure that the value resulting from Ada.Unchecked_Conversion properly represents a
value of the parameter's subtype.

• Isolate the use of Ada.Unchecked_Conversion in package bodies.

example
The following example shows how to use the 'Valid attribute to check validity of scalar
data:
--
with Ada.Unchecked_Conversion;
with Ada.Text_IO;
with Ada.Integer_Text_IO;

procedure Test is

type Color is (Red, Yellow, Blue);
for Color'Size use Integer'Size;

function Integer_To_Color is
new Ada.Unchecked_Conversion (Source => Integer,

Target => Color);

Possible_Color : Color;
Number : Integer;

begin -- Test

Ada.Integer_Text_IO.Get (Number);
Possible_Color := Integer_To_Color (Number);

if Possible_Color'Valid then
Ada.Text_IO.Put_Line(Color'Image(Possible_Color));

else
Ada.Text_IO.Put_Line("Number does not correspond to a color.");

end if;

end Test;
--

rationale
An unchecked conversion is a bit-for-bit copy without regard to the meanings attached to
those bits and bit positions by either the source or the destination type. The source bit
pattern can easily be meaningless in the context of the destination type. Unchecked conver-
sions can create values that violate type constraints on subsequent operations. Unchecked
conversion of objects mismatched in size has implementation-dependent results.

17 http://www.adaic.com/standards/95lrm/html/RM-13-9.html

150

http://www.adaic.com/standards/95lrm/html/RM-13-9.html

Erroneous execution and bounded errors

Using the 'Valid attribute on scalar data allows you to check whether it is in range without
raising an exception if it is out of range. There are several cases where such a validity check
enhances the readability and maintainability of the code:

• • Data produced through an unchecked conversion
• Input data
• Parameter values returned from a foreign language interface
• Aborted assignment (during asynchronous transfer of control or execution of an abort
statement)

• Disrupted assignment from failure of a language-defined check
• Data whose address has been specified with the 'Address attribute

An access value should not be assumed to be correct when obtained without compiler or
run-time checks. When dealing with access values, use of the 'Valid attribute helps prevent
the erroneous dereferencing that might occur after using Ada.Unchecked_Deallocation,
Unchecked_Access, or Ada.Unchecked_Conversion.

In the case of a nonscalar object used as an actual parameter in an unchecked conversion,
you should ensure that its value on return from the procedure properly represents a value
in the subtype. This case occurs when the parameter is of mode out or in out. It is
important to check the value when interfacing to foreign languages or using a language-
defined input procedure. The Ada Reference Manual 1995, §13.9.1 19 [Annotated20] lists the
full rules concerning data validity.

6.10.2 Unchecked Deallocation
guideline
• Isolate the use of Ada.Unchecked_Deallocation in package bodies.
• Ensure that no dangling reference to the local object exists after exiting the scope of the
local object.

rationale
Most of the reasons for using Ada.Unchecked_Deallocation with caution have been given
in Guideline 5.4.5. When this feature is used, no checking is performed to verify that there is
only one access path to the storage being deallocated. Thus, any other access paths are not
made null. Depending on the value of these other access paths could result in erroneous
execution.

If your Ada environment implicitly uses dynamic heap storage but does not fully and reliably
reclaim and reuse heap storage, you should not use Ada.Unchecked_Deallocation.

19 http://www.adaic.com/standards/95lrm/html/RM-13-9-1.html

151

http://www.adaic.com/standards/95lrm/html/RM-13-9-1.html

Programming Practices

6.10.3 Unchecked Access
guideline
• Minimize the use of the attribute Unchecked_Access, preferably isolating it to package
bodies.

• Use the attribute Unchecked_Access only on data whose lifetime/scope is ”library level.”

rationale
The accessibility rules are checked statically at compile time (except for access parameters,
which are checked dynamically). These rules ensure that the access value cannot outlive the
object it designates. Because these rules are not applied in the case of Unchecked_Access,
an access path could be followed to an object no longer in scope.

Isolating the use of the attribute Unchecked_Access means to isolate its use from clients
of the package. You should not apply it to an access value merely for the sake of returning
a now unsafe value to clients.

When you use the attribute Unchecked_Access, you are creating access values in an unsafe
manner. You run the risk of dangling references, which in turn lead to erroneous execution
(Ada Reference Manual 1995, §13.9.1 21 [Annotated22]).

exceptions

The Ada Reference Manual 1995, §13.10 23 [Annotated24]) defines the following potential use
for this otherwise dangerous attribute. ”This attribute is provided to support the situation
where a local object is to be inserted into a global linked data structure, when the programmer
knows that it will always be removed from the data structure prior to exiting the object's
scope.”

6.10.4 Address Clauses
guideline
• Use address clauses to map variables and entries to the hardware device or memory, not
to model the FORTRAN ”equivalence” feature.

• Ensure that the address specified in an attribute definition clause is valid and does not
conflict with the alignment.

• If available in your Ada environment, use the package Ada.Interrupts to associate han-
dlers with interrupts.

• Avoid using the address clause for nonimported program units.

21 http://www.adaic.com/standards/95lrm/html/RM-13-9-1.html
23 http://www.adaic.com/standards/95lrm/html/RM-13-10.html

152

http://www.adaic.com/standards/95lrm/html/RM-13-9-1.html
http://www.adaic.com/standards/95lrm/html/RM-13-10.html

Erroneous execution and bounded errors

example
Single_Address : constant System.Address :=
System.Storage_Elements.To_Address(...);

Interrupt_Vector_Table : Hardware_Array;
for Interrupt_Vector_Table'Address use Single_Address;

rationale
The result of specifying a single address for multiple objects or program units is undefined,
as is specifying multiple addresses for a single object or program unit. Specifying multiple
address clauses for an interrupt is also undefined. It does not necessarily overlay objects or
program units, or associate a single entry with more than one interrupt.

You are responsible for ensuring the validity of an address you specify. Ada requires that
the object of an address be an integral multiple of its alignment.

In Ada 83 (Ada Reference Manual 1983) you had to use values of type System.Address to
attach an interrupt entry to an interrupt. While this technique is allowed in Ada 95, you
are using an obsolete feature. You should use a protected procedure and the appropriate
pragmas (Rationale 1995, §C.3.2).

6.10.5 Suppression of Exception Check
guideline
• Do not suppress exception checks during development.
• If necessary, during operation, introduce blocks that encompass the smallest range of
statements that can safely have exception checking removed.

rationale
If you disable exception checks and program execution results in a condition in which an
exception would otherwise occur, the program execution is erroneous. The results are
unpredictable. Further, you must still be prepared to deal with the suppressed exceptions
if they are raised in and propagated from the bodies of subprograms, tasks, and packages
you call.

By minimizing the code that has exception checking removed, you increase the reliability of
the program. There is a rule of thumb that suggests that 20% of the code is responsible for
80% of the CPU time. So, once you have identified the code that actually needs exception
checking removed, it is wise to isolate it in a block (with appropriate comments) and leave
the surrounding code with exception checking in effect.

153

Programming Practices

6.10.6 Initialization
guideline
• Initialize all objects prior to use.
• Use caution when initializing access values.
• Do not depend on default initialization that is not part of the language.
• Derive from a controlled type and override the primitive procedure to ensure automatic
initialization.

• Ensure elaboration of an entity before using it.
• Use function calls in declarations cautiously.

example
The first example illustrates the potential problem with initializing access values:
procedure Mix_Letters (Of_String : in out String) is

type String_Ptr is access String;
Ptr : String_Ptr := new String'(Of_String); -- could raise Storage_Error in

caller
begin -- Mix_Letters

...
exception

... -- cannot trap Storage_Error raised during elaboration of Ptr
declaration
end Mix_Letters;

The second example illustrates the issue of ensuring the elaboration of an entity before its
use:
--
package Robot_Controller is

...
function Sense return Position;
...

end Robot_Controller;
--
package body Robot_Controller is
...

Goal : Position := Sense; -- This raises Program_Error
...

function Sense return Position is
begin

...
end Sense;

begin -- Robot_Controller
Goal := Sense; -- The function has been elaborated.
...

end Robot_Controller;
--

rationale
Ada does not define an initial default value for objects of any type other than access types,
whose initial default value is null. If you are initializing an access value at the point at
which it is declared and the allocation raises the exception Storage_Error, the exception

154

Erroneous execution and bounded errors

is raised in the calling not the called procedure. The caller is unprepared to handle this
exception because it knows nothing about the problem-causing allocation.

Operating systems differ in what they do when they allocate a page in memory: one oper-
ating system may zero out the entire page; a second may do nothing. Therefore, using the
value of an object before it has been assigned a value causes unpredictable (but bounded)
behavior, possibly raising an exception. Objects can be initialized implicitly by declaration
or explicitly by assignment statements. Initialization at the point of declaration is safest
as well as easiest for maintainers. You can also specify default values for components of
records as part of the type declarations for those records.

Ensuring initialization does not imply initialization at the declaration. In the example
above, Goal must be initialized via a function call. This cannot occur at the declaration
because the function Sense has not yet been elaborated, but it can occur later as part of
the sequence of statements of the body of the enclosing package.

An unelaborated function called within a declaration (initialization) raises the exception,
Program_Error, that must be handled outside of the unit containing the declarations. This
is true for any exception the function raises even if it has been elaborated.

If an exception is raised by a function call in a declaration, it is not handled in that
immediate scope. It is raised to the enclosing scope. This can be controlled by nesting
blocks.

See also Guideline 9.2.3.

notes
Sometimes, elaboration order can be dictated with pragma Elaborate_All. Pragma
Elaborate_All applied to a library unit causes the elaboration of the transitive closure
of the unit and its dependents. In other words, all bodies of library units reachable from
this library unit's body are elaborated, preventing an access-before-elaboration error (Ratio-
nale 1995, §10.3). Use the pragma Elaborate_Body when you want the body of a package
to be elaborated immediately after its declaration.

5.9.7 Direct_IO and Sequential_IO

guideline
• Ensure that values obtained from Ada.Direct_IO and Ada.Sequential_IO are in range.
• Use the 'Valid attribute to check the validity of scalar values obtained through
Ada.Direct_IO and Ada.Sequential_IO.

rationale
The exception Data_Error can be propagated by the Read procedures found in these pack-
ages if the element read cannot be interpreted as a value of the required subtype (Ada

155

Programming Practices

Reference Manual 1995, §A.13 25 [Annotated26]). However, if the associated check is too
complex, an implementation need not propagate Data_Error. In cases where the element
read cannot be interpreted as a value of the required subtype but Data_Error is not prop-
agated, the resulting value can be abnormal, and subsequent references to the value can
lead to erroneous execution.

notes
It is sometimes difficult to force an optimizing compiler to perform the necessary checks on
a value that the compiler believes is in range. Most compiler vendors allow the option of
suppressing optimization, which can be helpful.

6.10.7 Exception Propagation
guideline
Prevent exceptions from propagating outside any user-defined Finalize or Adjust
procedure by providing handlers for all predefined and user-defined exceptions at the end
of each procedure.

rationale
Using Finalize or Adjust to propagate an exception results in a bounded error (Ada Ref-
erence Manual 1995, §7.6.1 27 [Annotated28]). Either the exception will be ignored or a
Program_Error exception will be raised.

6.10.8 Protected Objects
guideline
Do not invoke a potentially blocking operation within a protected entry, a protected pro-
cedure, or a protected function.

rationale
The Ada Reference Manual 1995, §9.5.1 29 [Annotated30] lists the potentially blocking oper-
ations:

• • Selectstatement

25 http://www.adaic.com/standards/95lrm/html/RM-A-13.html
27 http://www.adaic.com/standards/95lrm/html/RM-7-6-1.html
29 http://www.adaic.com/standards/95lrm/html/RM-9-5-1.html

156

http://www.adaic.com/standards/95lrm/html/RM-A-13.html
http://www.adaic.com/standards/95lrm/html/RM-7-6-1.html
http://www.adaic.com/standards/95lrm/html/RM-9-5-1.html

Erroneous execution and bounded errors

• Accept statement
• Entry-call statement
• Delay statement
• Abort statement
• Task creation or activation
• External call on a protected subprogram (or an external requeue) with the same target
object as that of the protected action

• Call on a subprogram whose body contains a potentially blocking operation

Invoking any of these potentially blocking operations could lead either to a bounded error
being detected or to a deadlock situation. In the case of bounded error, the exception
Program_Error is raised. In addition, avoid calling routines within a protected entry, pro-
cedure, or function that could directly or indirectly invoke operating system primitives or
similar operations that can cause blocking that is not visible to the Ada run-time system.

6.10.9 Abort Statement
guideline
• Do not use an asynchronous selectstatement within abort-deferred operations.
• Do not create a task that depends on a master that is included entirely within the
execution of an abort-deferred operation.

rationale
An abort-deferred operation is one of the following:

• • Protected entry, protected procedure, or protected function
• User-defined Initialize procedure used as the last step of a default initialization of
a controlled object

• User-defined Finalize procedure used in finalization of a controlled object
• User-defined Adjust procedure used in assignment of a controlled object

The Ada Reference Manual 1995, §9.8 31 [Annotated32] states that the practices discouraged
in the guidelines result in bounded error. The exception Program_Error is raised if the
implementation detects the error. If the implementation does not detect the error, the
operations proceed as they would outside an abort-deferred operation. An abort statement
itself may have no effect.

31 http://www.adaic.com/standards/95lrm/html/RM-9-8.html

157

http://www.adaic.com/standards/95lrm/html/RM-9-8.html

Programming Practices

6.11 Summary
optional parts of the syntax
• Associate names with loops when they are nested (Booch 1986, 1987).
• Associate names with any loop that contains an exitstatement.
• Associate names with blocks when they are nested .
• Use loop names on all exitstatements from nested loops.
• Include the defining program unit name at the end of a package specification and body.
• Include the defining identifier at the end of a task specification and body.
• Include the entry identifier at the end of an accept statement.
• Include the designator at the end of a subprogram body.
• Include the defining identifier at the end of a protected unit declaration.

parameter lists
• Name formal parametername formal parameters descriptively to reduce the need for com-
ments .

• Use named parameter association in calls of infrequently used subprograms or entries
with many formal parameters .

• Use named association when instantiating generics.
• Use named association for clarification when the actual parameter is any literal or ex-
pression.

• Use named association when supplying a nondefault value to an optional parameter.
• Provide default parameters to allow for occasional, special use of widely used subprograms
or entries.

• Place default parameters at the end of the formal parameter list.
• Consider providing default values to new parameters added to an existing subprogram.
• Show the mode indication of all procedure and entry parameters (Nissen and Wallis 1984).
• Use the most restrictive parameter mode applicable to your application.

types
• Use existing types as building blocks by deriving new types from them.
• Use range constraints on subtypes.
• Define new types, especially derived types, to include the largest set of possible values,
including boundary values.

• Constrain the ranges of derived types with subtypes, excluding boundary values.
• Use type derivation rather than type extension when there are no meaningful components
to add to the type.

• Avoid anonymous array types.
• Use anonymous array types for array variables only when no suitable type exists or can
be created and the array will not be referenced as a whole (e.g., used as a subprogram
parameter).

• Use access parameters and access discriminants to guarantee that the parameter or dis-
criminant is treated as a constant.

• Derive from controlled types in preference to using limited private types.
• Use limited private types in preference to private types.

158

Summary

• Use private types in preference to nonprivate types.
• Explicitly export needed operations rather than easing restrictions.
• Use access-to-subprogram types for indirect access to subprograms.
• Wherever possible, use abstract tagged types and dispatching rather than access-to-
subprogram types to implement dynamic selection and invocation of subprograms.

data structures
• When declaring a discriminant, use as constrained a subtype as possible (i.e., subtype
with as specific a range constraint as possible).

• Use a discriminated record rather than a constrained array to represent an array whose
actual values are unconstrained.

• Use records to group heterogeneous but related data.
• Consider records to map to I/O device data.
• Use access types to class-wide types to implement heterogeneous polymorphic data struc-
tures.

• Use tagged types and type extension rather than variant records (in combination with
enumeration types and case statements).

• Record structures should not always be flat. Factor out common parts.
• For a large record structure, group related components into smaller subrecords.
• For nested records, pick element names that read well when inner elements are referenced.
• Consider using type extension to organize large data structures.
• Differentiate between static and dynamic data. Use dynamically allocated objects with
caution.

• Use dynamically allocated data structures only when it is necessary to create and destroy
them dynamically or to be able to reference them by different names.

• Do not drop pointers to undeallocated objects.
• Do not leave dangling references to deallocated objects.
• Initialize all access variables and components within a record.
• Do not rely on memory deallocation.
• Deallocate explicitly.
• Use length clauses to specify total allocation size.
• Provide handlers for Storage_Error.
• Use controlled types to implement private types that manipulate dynamic data.
• Avoid unconstrained record objects unless your run-time environment reliably reclaims
dynamic heap storage.

• Unless your run-time environment reliably reclaims dynamic heap storage, declare the fol-
lowing items only in the outermost, unnested declarative part of either a library package,
a main subprogram, or a permanent task:
• Access types
• Constrained composite objects with nonstatic bounds
• Objects of an unconstrained composite type other than unconstrainedrecords
• Composite objects large enough (at compile time) for the compiler to allocate implicitly
on the heap

• Unless your run-time environment reliably reclaims dynamic heap storage or you are
creating permanent, dynamically allocated tasks, avoid declaring tasks in the following
situations:

159

Programming Practices

• Unconstrained array subtypes whose components are tasks
• Discriminated record subtypes containing a component that is an array of tasks, where
the array size depends on the value of the discriminant

• Any declarative region other than the outermost, unnested declarative part of either a
library package or a main subprogram

• Arrays of tasks that are not statically constrained
• Minimize the use of aliased variables.
• Use aliasing for statically created, ragged arrays (Rationale 1995, §3.7.1).
• Use aliasing to refer to part of a data structure when you want to hide the internal
connections and bookkeeping information.

• Use access discriminants to create self-referential data structures, i.e., a data structure
one of whose components points to the enclosing structure.

• Use modular types rather than a Boolean arrays when you create data structures that
need bit-wise operations, such as and and or.

expressions
• Use 'First or 'Last instead of numeric literals to represent the first or last values of a
range.

• Use 'Range or the subtype name of the range instead of 'First .. 'Last.
• Use array attributes 'First, 'Last, or 'Length instead of numeric literals for accessing
arrays.

• Use the 'Range of the array instead of the name of the index subtype to express a range.
• Use 'Range instead of 'First .. 'Last to express a range.
• Use parentheses to specify the order of subexpression evaluation to clarify expressions
(NASA 1987).

• Use parentheses to specify the order of evaluation for subexpressions whose correctness
depends on left to right evaluation.

• Avoid names and constructs that rely on the use of negatives .
• Choose names of flags so they represent states that can be used in positive form.
• Use short-circuit forms of the logical operators to specify the order of conditions when
the failure of one condition means that the other condition will raise an exception.

• Use <= and >= in relational expressions with real operands instead of =.

statements
• Minimize the depth of nested expressions (Nissen and Wallis 1984).
• Minimize the depth of nested control structures (Nissen and Wallis 1984).
• Try using simplification heuristics.
• Use slices rather than a loop to copy part of an array.
• Minimize the use of an others choice in a casestatement.
• Do not use ranges of enumeration literals in case statements.
• Use case statements rather than if/elsif statements, wherever possible.
• Use type extension and dispatching rather than case statements, if possible.
• Use for loops, whenever possible.
• Use while loops when the number of iterations cannot be calculated before entering the
loop but a simple continuation condition can be applied at the top of the loop.

160

Summary

• Use plain loops with exit statements for more complex situations.
• Avoid exit statements in while and for loops.
• Minimize the number of ways to exit a loop.
• Use exit statements to enhance the readability of loop termination code (NASA 1987).
• Use exit when ... rather than if ... then exitwhenever possible (NASA 1987).
• Review exit statement placement.
• Consider specifying bounds on loops.
• Consider specifying bounds on recursion.
• Do not use goto statements.
• Minimize the number of returnstatements from a subprogram (NASA 1987).
• Highlight returnstatements with comments or white space to keep them from being lost
in other code.

• Use blocks to localize the scope of declarations.
• Use blocks to perform local renaming.
• Use blocks to define local exception handlers.
• Use an aggregate instead of a sequence of assignments to assign values to all components
of a record

• Use an aggregate instead of a temporary variable when building a record to pass as an
actual parameter

• Use positional association only when there is a conventional ordering of the arguments.

visibility
• When you need to provide visibility to operators, use the use type clause.
• Avoid/minimize the use of the use clause (Nissen and Wallis 1984).
• Consider using a package renames clause rather than a use clause for a package.
• Consider using the use clause in the following situations:
• When standard packages are needed and no ambiguous references are introduced
• When references to enumeration literals are needed

• Localize the effect of all use clauses.
• Limit the scope of a renaming declaration to the minimum necessary scope.
• Rename a long, fully qualified name to reduce the complexity if it becomes unwieldy.
• Use renaming to provide the body of a subprogram if this subprogram merely calls the
first subprogram.

• Rename declarations for visibility purposes rather than using the use clause, except for
operators .

• Rename parts when your code interfaces to reusable components originally written with
nondescriptive or inapplicable nomenclature.

• Use a project-wide standard list of abbreviations to rename common packages.
• Provide a use type rather than a renames clause to provide visibility to operators.
• Limit overloading to widely used subprograms that perform similar actions on arguments
of different types (Nissen and Wallis 1984).

• Preserve the conventional meaning of overloaded operators (Nissen and Wallis 1984).
• Use ”+” to identify adding, joining, increasing, and enhancing kinds of functions.
• Use ”-” to identify subtraction, separation, decreasing, and depleting kinds of functions.
• Use operator overloading sparingly and uniformly when applied to tagged types.
• Define an appropriate equality operator for private types.

161

Programming Practices

• Consider redefining the equality operator for a private type.
• When overloading the equality operator for types, maintain the properties of an algebraic
equivalence relation.

using exceptions
• When it is easy and efficient to do so, avoid causing exceptions to be raised.
• Provide handlers for exceptions that cannot be avoided.
• Use exception handlers to enhance readability by separating fault handling from normal
execution.

• Do not use exceptions and exception handlers as goto statements.
• Do not evaluate the value of an object (or a part of an object) that has become abnormal
because of the failure of a language-defined check.

• When writing an exception handler for others, capture and return additional in-
formation about the exception through the Exception_Name, Exception_Message
, or Exception_Information subprograms declared in the predefined package
Ada.Exceptions.

• Use others only to catch exceptions you cannot enumerate explicitly, preferably only to
flag a potential abort.

• During development, trap others, capture the exception being handled, and consider
adding an explicit handler for that exception.

• Handle all exceptions, both user and predefined .
• For every exception that might be raised, provide a handler in suitable frames to protect
against undesired propagation outside the abstraction .

• Do not rely on being able to identify the fault-raising, predefined, or implementation-
defined exceptions.

• Use the facilities defined in Ada.Exceptions to capture as much information as possible
about an exception.

• Use blocks to associate localized sections of code with their own exception handlers.

erroneous execution and bounded errors
• Use Ada.Unchecked_Conversion only with the utmost care (Ada Reference Manual 1995,
§13.9 33 [Annotated34]).

• Consider using the 'Valid attribute to check the validity of scalar data).
• Ensure that the value resulting from Ada.Unchecked_Conversion properly represents a
value of the parameter's subtype.

• Isolate the use of Ada.Unchecked_Conversion in package bodies.
• Isolate the use of Ada.Unchecked_Deallocation in package bodies.
• Ensure that no dangling reference to the local object exists after exiting the scope of the
local object.

• Minimize the use of the attribute Unchecked_Access, preferably isolating it to package
bodies.

• Use the attribute Unchecked_Access only on data whose lifetime/scope is ”library level.”

33 http://www.adaic.com/standards/95lrm/html/RM-13-9.html

162

http://www.adaic.com/standards/95lrm/html/RM-13-9.html

Summary

• Use address clauses to map variables and entries to the hardware device or memory, not
to model the FORTRAN ”equivalence” feature.

• Ensure that the address specified in an attribute definition clause is valid and does not
conflict with the alignment.

• If available in your Ada environment, use the package Ada.Interrupts to associate han-
dlers with interrupts.

• Avoid using the address clause for nonimported program units.
• Do not suppress exception checks during development.
• If necessary, during operation, introduce blocks that encompass the smallest range of
statements that can safely have exception checking removed.

• Initialize all objects , including access values, prior to use.
• Use caution when initializing access values.
• Do not depend on default initialization that is not part of the language.
• Derive from a controlled type and override the primitive procedure to ensure automatic
initialization.

• Ensure elaboration of an entity before using it.
• Use function calls in declarations cautiously.
• Ensure that values obtained from Ada.Direct_IO and Ada.Sequential_IO are in range.
• Use the 'Valid attribute to check the validity of scalar values obtained through
Ada.Direct_IO and Ada.Sequential_IO.

• Prevent exceptions from propagating outside any user-defined Finalize or Adjust
procedure by providing handlers for all predefined and user-defined exceptions at the
end of each procedure.

• Do not invoke a potentially blocking operation within a protected entry, a protected
procedure, or a protected function.

• Do not use an asynchronous select statement within abort-deferred operations.
• Do not create a task that depends on a master that is included entirely within the
execution of an abort-deferred operation.

163

7 Concurrency

7.1 Introduction
Concurrency exists as either apparent concurrency or real concurrency. In a single proces-
sor environment, apparent concurrency is the result of interleaved execution of concurrent
activities. In a multiprocessor environment, real concurrency is the result of overlapped
execution of concurrent activities.

Concurrent programming is more difficult and error prone than sequential programming.
The concurrent programming features of Ada are designed to make it easier to write and
maintain concurrent programs that behave consistently and predictably and avoid such
problems as deadlock and starvation. The language features themselves cannot guarantee
that programs have these desirable properties. They must be used with discipline and care,
a process supported by the guidelines in this chapter.

The correct usage of Ada concurrency features results in reliable, reusable, and portable
software. Protected objects (added in Ada 95) encapsulate and provide synchronized access
to their private data (Rationale 1995, §II.9). Protected objects help you manage shared
data without incurring a performance penalty. Tasks model concurrent activities and use
the rendezvous to synchronize between cooperating concurrent tasks. Much of the synchro-
nization required between tasks involves data synchronization, which can be accomplished
most efficiently, in general, using protected objects. Misuse of language features results in
software that is unverifiable and difficult to reuse or port. For example, using task priorities
or delays to manage synchronization is not portable. It is also important that a reusable
component not make assumptions about the order or speed of task execution (i.e., about
the compiler's tasking implementation).

Although concurrent features such as tasks and protected objects are supported by the core
Ada language, care should be taken when using these features with implementations that
do not specifically support Annex D (Real-Time Systems). If Annex D is not specifically
supported, features required for real-time applications might not be implemented.

Guidelines in this chapter are frequently worded ”consider . . .” because hard and fast rules
cannot apply in all situations. The specific choice you make in a given situation involves
design tradeoffs. The rationale for these guidelines is intended to give you insight into some
of these tradeoffs.

7.2 Concurrency Options
Many problems map naturally to a concurrent programming solution. By understanding
and correctly using the Ada language concurrency features, you can produce solutions that
are largely independent of target implementation. Tasks provide a means, within the Ada

165

Concurrency

language, of expressing concurrent, asynchronous threads of control and relieving program-
mers from the problem of explicitly controlling multiple concurrent activities. Protected
objects serve as a building block to support other synchronization paradigms. Tasks cooper-
ate to perform the required activities of the software. Synchronization and mutual exclusion
are required between individual tasks. The Ada rendezvous and protected objects provide
powerful mechanisms for both synchronization and mutual exclusion.

7.2.1 Protected Objects
guideline
• Consider using protected objects to provide mutually exclusive access to data.
• Consider using protected objects to control or synchronize access to data shared by mul-
tiple tasks .

• Consider using protected objects to implement synchronization, such as a passive resource
monitor.

• Consider encapsulating protected objects in the private part or body of a package.
• Consider using a protected procedure to implement an interrupt handler.
• Do not attach a protected procedure handler to a hardware interrupt if that interrupt
has a maximum priority greater than the ceiling priority assigned to the handler.

• Avoid the use of global variables in entry barriers.
• Avoid the use of barrier expressions with side effects.

example
generic

type Item is private;
Maximum_Buffer_Size : in Positive;

package Bounded_Buffer_Package is

subtype Buffer_Index is Positive range 1..Maximum_Buffer_Size;
subtype Buffer_Count is Natural range 0..Maximum_Buffer_Size;
type Buffer_Array is array (Buffer_Index) of Item;

protected type Bounded_Buffer is
entry Get (X : out Item);
entry Put (X : in Item);

private
Get_Index : Buffer_Index := 1;
Put_Index : Buffer_Index := 1;
Count : Buffer_Count := 0;
Data : Buffer_Array;

end Bounded_Buffer;

end Bounded_Buffer_Package;

--
package body Bounded_Buffer_Package is

protected body Bounded_Buffer is

entry Get (X : out Item) when Count > 0 is
begin

X := Data(Get_Index);
Get_Index := (Get_Index mod Maximum_Buffer_Size) + 1;
Count := Count - 1;

end Get;

166

Concurrency Options

entry Put (X : in Item) when Count < Maximum_Buffer_Size is
begin

Data(Put_Index) := X;
Put_Index := (Put_Index mod Maximum_Buffer_Size) + 1;
Count := Count + 1;

end Put;

end Bounded_Buffer;

end Bounded_Buffer_Package;

rationale
Protected objects are intended to provide a ”lightweight” mechanism for mutual exclusion
and data synchronization. You should use a task only when you need to introduce explicitly
a new, concurrent thread of control (see Guideline 6.1.2).

Protected objects offer a low overhead, efficient means to coordinate access to shared data.
A protected type declaration is similar to a program unit and consists of both a specification
and a body. The data to be protected must be declared in the specification, as well as the
operations that can be used to manipulate this data. If some operations are only allowed
conditionally, entries must be provided. Ada 95 rules require that entry barriers be evaluated
at the end of procedure calls and entry calls on protected objects. Entry barriers should
avoid referring to global variables so that the underlying assumptions of the state of the
protected object are not violated. Protected procedures and entries should be used to
change the state of a protected object.

Most clients of an abstraction do not need to know how it is implemented, whether it is a
regular abstraction or a shared abstraction. A protected type is inherently a limited type,
and you can use protected types to implement a limited private type exported by a package.
As pointed out in Guideline 5.3.3, abstractions are best implemented using private types
(possibly derived from controlled types) or limited private types, providing appropriate
operations that overcome the restrictiveness imposed by the use of private types.

The Rationale (1995, §9.1) describes the interrupt handling features that make the protected
procedure the recommended building block:

A protected procedure is very well suited to act as an interrupt handler for a number of
reasons; they both typically have a short bounded execution time, do not arbitrarily block,
have a limited context and finally they both have to integrate with the priority model. The
nonblocking critical region matches the needs of an interrupt handler, as well as the needs
of non-interrupt-level code to synchronize with an interrupt handler. The entry barrier
construct allows an interrupt handler to signal a normal task by changing the state of a
component of the protected object and thereby making a barrier true.

When using protected procedures for interrupt handling, you must ensure that the ceiling
priority of the handler is at least as high as the maximum possible priority of the interrupt to
be handled. With priority-ceiling locking, the delivery of an interrupt with a higher priority
than the ceiling priority of the handler will result in erroneous execution (Ada Reference
Manual 1995, §C.3.1 1 [Annotated2]).

1 http://www.adaic.com/standards/95lrm/html/RM-C-3-1.html

167

http://www.adaic.com/standards/95lrm/html/RM-C-3-1.html

Concurrency

A global variable could be changed by another task or even by a call of a protected function.
These changes will not be acted upon promptly. Therefore, you should not use a global
variable in an entry barrier.

Side effects in barrier expressions can cause undesirable dependencies. Therefore, you should
avoid the use of barrier expressions that can cause side effects.

See also Guideline .

exceptions
If the client of the abstraction containing the protected object must use a select statement
with an entry call, you must expose the protected object on the package interface.

7.2.2 Tasks
guideline
• Use tasks to model selected asynchronous threads of control within the problem domain.
• Consider using tasks to define concurrent algorithms.
• Consider using rendezvous when your application requires synchronous unbuffered com-
munication.

example
The naturally concurrent objects within the problem domain can be modeled as Ada tasks.
-- The following example of a stock exchange simulation shows how naturally
-- concurrent objects within the problem domain can be modeled as Ada tasks.

-- Protected objects are used for the Display and for the Transaction_Queue
-- because they only need a mutual exclusion mechanism.

protected Display is
entry Shift_Tape_Left;
entry Put_Character_On_Tape (C : in Character);

end Display;

protected Transaction_Queue is
entry Put (T : in Transaction);
entry Get (T : out Transaction);
function Is_Empty return Boolean;

end Transaction_Queue;

-- A task is needed for the Ticker_Tape because it has independent cyclic
-- activity. The Specialist and the Investor are best modeled with tasks
-- since they perform different actions simultaneously, and should be
-- asynchronous threads of control.

task Ticker_Tape;

task Specialist is
entry Buy (Order : in Order_Type);
entry Sell (Order : in Order_Type);

168

Concurrency Options

end Specialist;

task Investor;

task body Ticker_Tape is

...
begin

loop
Display.Shift_Tape_Left;

if not More_To_Send (Current_Tape_String) and then
not Transaction_Queue.Is_Empty

then
Transaction_Queue.Get (Current_Tape_Transaction);
... -- convert Transaction to string

end if;

if More_To_Send (Current_Tape_String) then
Display.Put_Character_On_Tape (Next_Char);

end if;

delay until Time_To_Shift_Tape;
Time_To_Shift_Tape := Time_To_Shift_Tape + Shift_Interval;

end loop;
end Ticker_Tape;

task body Specialist is
...

loop
select

accept Buy (Order : in Order_Type) do
...

end Buy;
...

or
accept Sell (Order : in Order_Type) do

...
end Sell;
...

else
-- match orders
...
Transaction_Queue.Put (New_Transaction);
...

end select;
end loop;

end Specialist;

task body Investor is
...

begin

loop
-- some algorithm that determines whether the investor
-- buys or sells, quantity, price, etc

...

if ... then
Specialist.Buy (Order);

end if;

if ... then
Specialist.Sell (Order);

169

Concurrency

end if;
end loop;

end Investor;

Multiple tasks that implement the decomposition of a large, matrix multiplication algo-
rithm are an example of an opportunity for real concurrency in a multiprocessor target
environment. In a single processor target environment, this approach may not be justified
due to the overhead incurred from context switching and the sharing of system resources.

A task that updates a radar display every 30 milliseconds is an example of a cyclic activity
supported by a task.

A task that detects an over-temperature condition in a nuclear reactor and performs an
emergency shutdown of the systems is an example of a task to support a high-priority
activity.

rationale
These guidelines reflect the intended uses of tasks. They all revolve around the fact that a
task has its own thread of control separate from the main subprogram (or environment task)
of a partition. The conceptual model for a task is a separate program with its own virtual
processor. This provides the opportunity to model entities from the problem domain in
terms more closely resembling those entities and the opportunity to handle physical devices
as a separate concern from the main algorithm of the application. Tasks also allow naturally
concurrent activities that can be mapped to multiple processors within a partition when
available.

You should use tasks for separate threads of control. When you synchronize tasks, you
should use the rendezvous mechanism only when you are trying to synchronize actual pro-
cesses (e.g., specify a time-sensitive ordering relationship or tightly coupled interprocess
communication). For most synchronization needs, however, you should use protected ob-
jects (see Guideline 6.1.1), which are more flexible and can minimize unnecessary bottle-
necks. Additionally, passive tasks are probably better modeled through protected objects
than active tasks.

Resources shared between multiple tasks, such as devices, require control and synchroniza-
tion because their operations are not atomic. Drawing a circle on a display might require
that many low-level operations be performed without interruption by another task. A dis-
play manager would ensure that no other task accesses the display until all these operations
are complete.

7.2.3 Discriminants
guideline
• Consider using discriminants to minimize the need for an explicit initialization operation
(Rationale 1995, §9.1).

• Consider using discriminants to control composite components of the protected objects,
including setting the size of an entry family (Rationale 1995, §9.1).

170

Concurrency Options

• Consider using a discriminant to set the priority of a protected object (Rationale 1995,
§9.1).

• Consider using a discriminant to identify an interrupt to a protected object (Rationale
1995, §9.1).

• Consider declaring a task type with a discriminant to indicate (Rationale 1995, §9.6):
• Priority, storage size, and size of entry families of individual tasks of a type
• Data associated with a task (through an access discriminant)

example
The following code fragment shows how a task type with discriminant can be used to
associate data with a task (Rationale 1995, §9.6):
type Task_Data is

record
... -- data for task to work on

end record;
task type Worker (D : access Task_Data) is

...
end;
-- When you declare a task object of type Worker, you explicitly associate this
task with

-- its data through the discriminant D
Data_for_Worker_X : aliased Task_Data := ...;
X : Worker (Data_for_Worker_X'Access);

The following example shows how to use discriminants to associate data with tasks, thus
allowing the tasks to be parameterized when they are declared and eliminating the need for
an initial rendezvous with the task:
task type Producer (Channel : Channel_Number; ID : ID_Number);

task body Producer is
begin

loop

... -- generate an item

Buffer.Put (New_Item);

end loop;
end Producer;

...

Keyboard : Producer (Channel => Keyboard_Channel, ID => 1);
Mouse : Producer (Channel => Mouse_Channel, ID => 2);

The next example shows how an initial rendezvous can be used to associate data with tasks.
This is more complicated and more error prone than the previous example. This method
is no longer needed in Ada 95 due to the availability of discriminants with task types and
protected types:
task type Producer is

entry Initialize (Channel : in Channel_Number; ID : in ID_Number);
end Producer;

171

Concurrency

task body Producer is
IO_Channel : Channel_Number;
Producer_ID : ID_Number;

begin

accept Initialize (Channel : in Channel_Number; ID : in ID_Number) do
IO_Channel := Channel;
Producer_ID := ID;

end;

loop

... -- generate an item

Buffer.Put (New_Item);

end loop;
end Producer;

...

Keyboard : Producer;
Mouse : Producer;

...

begin
...
Keyboard.Initialize (Channel => Keyboard_Channel, ID => 1);
Mouse.Initialize (Channel => Mouse_Channel, ID => 2);
...

rationale
Using discriminants to parameterize protected objects provides a low-overhead way of spe-
cializing the protected object. You avoid having to declare and call special subprograms
solely for the purpose of passing this information to the protected object.

Task discriminants provide a way for you to identify or parameterize a task without the
overhead of an initial rendezvous. For example, you can use this discriminant to initialize
a task or tell it who it is (from among an array of tasks) (Rationale 1995, §II.9). More
importantly, you can associate the discriminant with specific data. When you use an access
discriminant, you can bind the data securely to the task because the access discriminant is
constant and cannot be detached from the task (Rationale 1995, §9.6). This reduces and
might eliminate bottlenecks in the parallel activation of tasks (Rationale 1995, §9.6).

notes
Using an access discriminant to initialize a task has a potential danger in that the data
being referenced could change after the rendezvous. This possibility and its effects should
be considered and, if necessary, appropriate actions taken (e.g., copy the referenced data
and not rely on the data pointed to by the discriminant after initialization).

172

Concurrency Options

7.2.4 Anonymous Task Types and Protected Types
guideline
• Consider using single task declarations to declare unique instances of concurrent tasks.
• Consider using single protected declarations to declare unique instances of protected
objects.

example
The following example illustrates the syntactic differences between the kinds of tasks and
protected objects discussed here. Buffer is static, but its type is anonymous. No type name
is declared to enable you to declare further objects of the same type.
task Buffer;

Because it is declared explicitly, the task type Buffer_Manager is not anonymous. Channel
is static and has a name, and its type is not anonymous.
task type Buffer_Manager;
Channel : Buffer_Manager;

rationale
The use of anonymous tasks and protected objects of anonymous type avoids a proliferation
of task and protected types that are only used once, and the practice communicates to
maintainers that there are no other tasks or protected objects of that type. If the need
arises later to have additional tasks or protected objects of the same type, then the work
required to convert an anonymous task to a task type or an anonymous protected object to
a protected type is minimal.

The consistent and logical use of task and protected types, when necessary, contributes to
understandability. Identical tasks can be declared using a common task type. Identical pro-
tected objects can be declared using a common protected type. Dynamically allocated task
or protected structures are necessary when you must create and destroy tasks or protected
objects dynamically or when you must reference them by different names.

notes
Though changing the task or protected object from an anonymous type to a declared type
is trivial, structural changes to the software architecture might not be trivial. Introduction
of multiple tasks or protected objects of the declared type might require the scope of the
type to change and might change the behavior of the network of synchronizing tasks and
protected objects.

173

Concurrency

7.2.5 Dynamic Tasks
guideline
• Minimize dynamic creation of tasks because of the potentially high startup overhead;
reuse tasks by having them wait for new work on some appropriate entry queue.

example
The approach used in the following example is not recommended. The example shows why
caution is required with dynamically allocated task and protected objects. It illustrates
how a dynamic task can be disassociated from its name:
task type Radar_Track;
type Radar_Track_Pointer is access Radar_Track;
Current_Track : Radar_Track_Pointer;

task body Radar_Track is
begin

loop
-- update tracking information
...
-- exit when out of range
delay 1.0;

end loop;
...
end Radar_Track;

...
loop

...
-- Radar_Track tasks created in previous passes through the loop
-- cannot be accessed from Current_Track after it is updated.
-- Unless some code deals with non-null values of Current_Track,
-- (such as an array of existing tasks)
-- this assignment leaves the existing Radar_Track task running with
-- no way to signal it to abort or to instruct the system to
-- reclaim its resources.

Current_Track := new Radar_Track;
...

end loop;

rationale
Starting up a task has significant overhead in many implementations. If an application has
a need for dynamically created tasks, the tasks should be implemented with a top-level loop
so that after such a task completes its given job, it can cycle back and wait for a new job.

You can use dynamically allocated tasks and protected objects when you need to allow the
number of tasks and protected objects to vary during execution. When you must ensure
that tasks are activated in a particular order, you should use dynamically allocated tasks
because the Ada language does not define an activation order for statically allocated task
objects. In using dynamically allocated tasks and protected objects, you face the same
issues as with any use of the heap.

174

Concurrency Options

7.2.6 Priorities
guideline
• Do not rely on pragma Priority unless your compiler supports the Real-Time Annex (Ada
Reference Manual 1995, Annex D) and priority scheduling.

• Minimize risk of priority inversion by use of protected objects and ceiling priority.
• Do not rely upon task priorities to achieve a particular sequence of task execution.

example
For example, let the tasks have the following priorities:
task T1 is

pragma Priority (High);
end T1;

task T2 is
pragma Priority (Medium);

end T2;

task Server is
entry Operation (...);

end Server;

task body T1 is
begin

...
Server.Operation (...);
...

end T1;
task body T2 is
begin

...
Server.Operation (...);
...

end T2;

task body Server is
begin

...
accept Operation (...);
...

end Server;

At some point in its execution, T1 is blocked. Otherwise, T2 and Server might never
execute. If T1 is blocked, it is possible for T2 to reach its call to Server's entry (Operation)
before T1. Suppose this has happened and that T1 now makes its entry call before Server
has a chance to accept T2's call.

This is the timeline of events so far:

T1 blocks T2 calls Server.Operation T1 unblocks T1 calls Server.Operation—Does Server
accept the call from T1 or from T2?

You might expect that, due to its higher priority, T1's call would be accepted by Server
before that of T2. However, entry calls are queued in first-in-first-out (FIFO) order and
not queued in order of priority (unless pragma Queueing_Policy is used). Therefore, the
synchronization between T1 and Server is not affected by T1's priority. As a result, the call

175

Concurrency

from T2 is accepted first. This is a form of priority inversion. (Annex D can change the
default policy of FIFO queues.)

A solution might be to provide an entry for a High priority user and an entry for a Medium
priority user.

task Server is

entry Operation_High_Priority;
entry Operation_Medium_Priority;
...

end Server;

task body Server is
begin

loop
select

accept Operation_High_Priority do
Operation;

end Operation_High_Priority;
else -- accept any priority

select
accept Operation_High_Priority do

Operation;
end Operation_High_Priority;

or
accept Operation_Medium_Priority do

Operation;
end Operation_Medium_Priority;

or
terminate;

end select;
end select;

end loop;
...
end Server;

However, in this approach, T1 still waits for one execution of Operation when T2 has already
gained control of the task Server. In addition, the approach increases the communication
complexity (see Guideline 6.2.6).

rationale
The pragma Priority allows relative priorities to be placed on tasks to accomplish scheduling.
Precision becomes a critical issue with hard-deadline scheduling. However, there are certain
problems associated with using priorities that warrant caution.

Priority inversion occurs when lower priority tasks are given service while higher priority
tasks remain blocked. In the first example, this occurred because entry queues are serviced
in FIFO order, not by priority. There is another situation referred to as a race condition .
A program like the one in the first example might often behave as expected as long as T1
calls Server.Operation only when T2 is not already using Server.Operation or waiting. You
cannot rely on T1 always winning the race because that behavior would be due more to
fate than to the programmed priorities. Race conditions change when either adding code
to an unrelated task or porting this code to a new target.

You should not rely upon task priorities to achieve an exact sequence of execution or rely
upon them to achieve mutual exclusion. Although the underlying dispatching model is

176

Concurrency Options

common to all Ada 95 implementations, there might be differences in dispatching, queuing,
and locking policies for tasks and protected objects. All of these factors might lead to
different sequences of execution. If you need to ensure a sequence of execution, you should
make use of Ada's synchronization mechanisms, i.e., protected objects or rendezvous.

notes
Work is being done to minimize these problems, including the introduction of a scheduling
algorithm known as the priority ceiling protocol (Goodenough and Sha 1988). The priority
ceiling protocol reduces the blocking time that causes priority inversion to only one critical
region (defined by the entries in a task). The protocol also eliminates deadlock (unless a task
recursively tries to access a critical region) by giving a ceiling priority to each task accessing
a resource that is as high as the priority of any task that ever accesses that resource. This
protocol is based on priority inheritance and, thus, deviates from the standard Ada tasking
paradigm, which supports priority ceiling emulation instead of the priority ceiling blocking
that occurs with priority inheritance.

Priorities are used to control when tasks run relative to one another. When both tasks are
not blocked waiting at an entry, the highest priority task is given precedence. However, the
most critical tasks in an application do not always have the highest priority. For example,
support tasks or tasks with small periods might have higher priorities because they need to
run frequently.

All production-quality validated Ada 95 compilers will probably support pragma Priority.
However, you should use caution unless (Annex D is specifically supported.

There is currently no universal consensus on how to apply the basic principles of rate
monotonic scheduling (RMS) to the Ada 95 concurrency model. One basic principle of RMS
is to arrange all periodic tasks so that tasks with shorter periods have higher priorities than
tasks with longer periods. However, with Ada 95, it might be faster to raise the priorities of
tasks whose jobs suddenly become critical than to wait for an executive task to reschedule
them. In this case, priority inversion can be minimized using a protected object with pragma
Locking_Policy(Ceiling_Locking) as the server instead of a task.

7.2.7 Delay Statements
guideline
• Do not depend on a particular delay being achievable (Nissen and Wallis 1984).
• Use a delay until not a delay statement to delay until a specific time has been reached.
• Avoid using a busy waiting loop instead of a delay.

example
The phase of a periodic task is the fraction of a complete cycle elapsed as measured from a
specified reference point. In the following example, an inaccurate delay causes the phase of
the periodic task to drift over time (i.e., the task starts later and later in the cycle):

Periodic:

177

Concurrency

loop
delay Interval;
...

end loop Periodic;

To avoid an inaccurate delay drift, you should use the delay until statement. The following
example (Rationale 1995, §9.3) shows how to satisfy a periodic requirement with an average
period:
task body Poll_Device is

use type Ada.Real_Time.Time;
use type Ada.Real_Time.Time_Span;

Poll_Time : Ada.Real_Time.Time := ...; -- time to start polling
Period : constant Ada.Real_Time.Time_Span := Ada.Real_Time.Milliseconds

(10);
begin

loop
delay until Poll_Time;
... -- Poll the device
Poll_Time := Poll_Time + Period;

end loop;
end Poll_Device;

rationale
There are two forms of delay statement. The delay will cause a delay for at least a specified
time interval. The delay until causes a delay until an absolute wake-up time. You should
choose the form appropriate to your application.

The Ada language definition only guarantees that the delay time is a minimum. The
meaning of a delay or delay until statement is that the task is not scheduled for execution
before the interval has expired. In other words, a task becomes eligible to resume execution
as soon as the amount of time has passed. However, there is no guarantee of when (or if)
it is scheduled after that time because the required resources for that task might not be
available at the expiration of the delay .

A busy wait can interfere with processing by other tasks. It can consume the very processor
resource necessary for completion of the activity for which it is waiting. Even a loop with
a delay can have the impact of busy waiting if the planned wait is significantly longer than
the delay interval. If a task has nothing to do, it should be blocked at an accept or select
statement, an entry call, or an appropriate delay.

The expiration time for a relative delay is rounded up to the nearest clock tick. If you use
the real-time clock features provided by (Annex D, however, clock ticks are guaranteed to
be no greater than one millisecond (Ada Reference Manual 1995, §D.8 3 [Annotated4]).

3 http://www.adaic.com/standards/95lrm/html/RM-D-8.html

178

http://www.adaic.com/standards/95lrm/html/RM-D-8.html

Communication

notes
You need to ensure the arithmetic precision of the calculation Poll_Time := Poll_Time +
Period; to avoid drift.

7.2.8 Extensibility and Concurrent Structures
guideline
• Carefully consider the placement of components of protected types within a tagged type
inheritance hierarchy.

• Consider using generics to provide extensibility of data types requiring the restrictions
provided by protected objects.

rationale
Once a component of a protected type is added to an inheritance hierarchy of an abstract
data type, further extensibility of that data type is impaired. When you constrain the
concurrent behavior of a type (i.e., introduce a protected type component), you lose the
ability to modify that behavior in subsequent derivations. Therefore, when the need arises
for a version of an abstract data type to impose the restrictions provided by protected
objects, the opportunity for reuse is maximized by adding the protected objects at the
leaves of the inheritance hierarchy.

The reusability of common protected operations (e.g., mutually exclusive read/write oper-
ations) can be maximized by using generic implementations of abstract data types. These
generic implementations then provide templates that can be instantiated with data types
specific to individual applications.

notes
You can address synchronization within an inheritance hierarchy in one of three ways:

• You can declare the root as a limited tagged type with a component that belongs to a
protected type and give the tagged type primitive operations that work by invoking the
protected operations of that component.

• Given a tagged type implementing an abstract data type (perhaps resulting from sev-
eral extensions), you can declare a protected type with a component belonging to the
tagged type. The body of each protected operation would then invoke the corresponding
operation of the abstract data type. The protected operations provide mutual exclusion.

• You can use a hybrid approach where you declare a protected type with a component
of some tagged type. You then use this protected type to implement a new root tagged
type (not a descendant of the original tagged type).

7.3 Communication
The need for tasks to communicate gives rise to most of the problems that make concurrent
programming so difficult. Used properly, Ada's intertask communication features can im-

179

Concurrency

prove the reliability of concurrent programs; used thoughtlessly, they can introduce subtle
errors that can be difficult to detect and correct.

7.3.1 Efficient Task Communication
guideline
• Minimize the work performed during a rendezvous.
• Minimize the work performed in the selective accept loop of a task.
• Consider using protected objects for data synchronization and communication.

example
In the following example, the statements in the accept body are performed as part of
the execution of both the caller task and the task Server, which contains Operation and
Operation2. The statements after the accept body are executed before Server can accept
additional calls to Operation or Operation2.

...
loop

select
accept Operation do

-- These statements are executed during rendezvous.
-- Both caller and server are blocked during this time.
...

end Operation;
...
-- These statements are not executed during rendezvous.
-- The execution of these statements increases the time required
-- to get back to the accept and might be a candidate for another

task.

or
accept Operation_2 do

-- These statements are executed during rendezvous.
-- Both caller and server are blocked during this time.
...

end Operation_2;
end select;
-- These statements are also not executed during rendezvous,
-- The execution of these statements increases the time required
-- to get back to the accept and might be a candidate for another task.

end loop;

rationale
To minimize the time required to rendezvous, only work that needs to be performed during
a rendezvous, such as saving or generating parameters, should be allowed in the accept
bodies.

When work is removed from the accept body and placed later in the selective accept loop,
the additional work might still suspend the caller task. If the caller task calls entry Oper-
ation again before the server task completes its additional work, the caller is delayed until
the server completes the additional work. If the potential delay is unacceptable and the

180

Communication

additional work does not need to be completed before the next service of the caller task,
the additional work can form the basis of a new task that will not block the caller task.

Operations on protected objects incur less execution overhead than tasks and are more
efficient for data synchronization and communication than the rendezvous. You must design
protected operations to be bounded, short, and not potentially blocking.

notes
In some cases, additional functions can be added to a task. For example, a task controlling
a communication device might be responsible for a periodic function to ensure that the
device is operating correctly. This type of addition should be done with care, realizing that
the response time of the task might be impacted (see the above rationale).

Minimizing the work performed during a rendezvous or selective accept loop of a task
can increase the rate of execution only when it results in additional overlaps in processing
between the caller and callee or when other tasks can be scheduled due to the shorter
period of execution. Therefore, the largest increases in execution rates will be seen in
multiprocessor environments. In single-processor environments, the increased execution
rate will not be as significant and there might even be a small net loss. The guideline is still
applicable, however, if the application could ever be ported to a multiprocessor environment.

7.3.2 Defensive Task Communication
guideline
• Provide a handler for exception Program_Error whenever you cannot avoid a selective
accept statement whose alternatives can all be closed (Honeywell 1986).

• Make systematic use of handlers for Tasking_Error.
• Be prepared to handle exceptions during a rendezvous .
• Consider using a when others exception handler.

example
This block allows recovery from exceptions raised while attempting to communicate a com-
mand to another task:
Accelerate:

begin
Throttle.Increase(Step);

exception
when Tasking_Error => ...
when Constraint_Error => ...
when Throttle_Too_Wide => ...
...

end Accelerate;

In this select statement, if all the guards happen to be closed, the program can continue by
executing the else part. There is no need for a handler for Program_Error. Other exceptions
can still be raised while evaluating the guards or attempting to communicate. You will also
need to include an exception handler in the task Throttle so that it can continue to execute
after an exception is raised during the rendezvous:

181

Concurrency

...
Guarded:

begin
select

when Condition_1 =>
accept Entry_1;

or
when Condition_2 =>

accept Entry_2;
else -- all alternatives closed

...
end select;

exception
when Constraint_Error =>

...
end Guarded;

In this select statement, if all the guards happen to be closed, exception Program_Error will
be raised. Other exceptions can still be raised while evaluating the guards or attempting
to communicate:
Guarded:

begin
select

when Condition_1 =>
accept Entry_1;

or
when Condition_2 =>

delay Fraction_Of_A_Second;
end select;

exception
when Program_Error => ...
when Constraint_Error => ...

end Guarded;
...

rationale
The exception Program_Error is raised if a selective accept statement (select statement
containing accepts) is reached, all of whose alternatives are closed (i.e., the guards evaluate
to False and there are no alternatives without guards), unless there is an else part. When
all alternatives are closed, the task can never again progress, so there is by definition an
error in its programming. You must be prepared to handle this error should it occur.

Because an else part cannot have a guard, it can never be closed off as an alternative action;
thus, its presence prevents Program_Error. However, an else part, a delay alternative, and
a terminate alternative are all mutually exclusive, so you will not always be able to provide
an else part. In these cases, you must be prepared to handle Program_Error.

The exception Tasking_Error can be raised in the calling task whenever it attempts to
communicate. There are many situations permitting this. Few of them are preventable by
the calling task.

If an exception is raised during a rendezvous and not handled in the accept statement, it
is propagated to both tasks and must be handled in two places (see Guideline 5.8). The
handling of the others exception can be used to avoid propagating unexpected exceptions to
callers (when this is the desired effect) and to localize the logic for dealing with unexpected

182

Communication

exceptions in the rendezvous. After handling, an unknown exception should normally be
raised again because the final decision of how to deal with it might need to be made at the
outermost scope of the task body.

notes
There are other ways to prevent Program_Error at a selective accept. These involve leaving
at least one alternative unguarded or proving that at least one guard will evaluate True
under all circumstances. The point here is that you or your successors will make mistakes
in trying to do this, so you should prepare to handle the inevitable exception.

7.3.3 Attributes 'Count, 'Callable, and 'Terminated
guideline
• Do not depend on the values of the task attributes 'Callable or 'Terminated (Nissen and
Wallis 1984).

• Do not depend on attributes to avoid Tasking_Error on an entry call.
• For tasks, do not depend on the value of the entry attribute 'Count.
• Using the 'Count attribute with protected entries is more reliable than using the 'Count
attribute with task entries.

example
In the following examples, Dispatch'Callable is a Boolean expression, indicating whether
a call can be made to the task Intercept without raising the exception Tasking_Error.
Dispatch'Count indicates the number of callers currently waiting at entry Transmit. Dis-
patch'Terminated is a Boolean expression, indicating whether the task Dispatch is in a
terminated state.

This task is badly programmed because it relies upon the values of the 'Count attributes
not changing between evaluating and acting upon them:

task body Dispatch is
...

select
when Transmit'Count > 0 and Receive'Count = 0 =>

accept Transmit;
...

or
accept Receive;
...

end select;
...
end Dispatch;

If the following code is preempted between evaluating the condition and initiating the call,
the assumption that the task is still callable might no longer be valid:
...
if Dispatch'Callable then

Dispatch.Receive;

183

Concurrency

end if;
...

rationale
Attributes 'Callable, 'Terminated, and 'Count are all subject to race conditions. Between
the time you reference an attribute and the time you take action, the value of the attribute
might change. Attributes 'Callable and 'Terminated convey reliable information once they
become False and True, respectively. If 'Callable is False, you can expect the callable state
to remain constant. If 'Terminated is True, you can expect the task to remain terminated.
Otherwise, 'Terminated and 'Callable can change between the time your code tests them
and the time it responds to the result.

The Ada Reference Manual 1995, §9.9 5 [Annotated6] itself warns about the asynchronous
increase and decrease of the value of 'Count. A task can be removed from an entry queue
due to execution of an abort statement as well as expiration of a timed entry call. The use
of this attribute in guards of a selective accept statement might result in the opening of
alternatives that should not be opened under a changed value of 'Count.

The value of the attribute 'Count is stable for protected units because any change to an
entry queue is itself a protected action, which will not occur while any other protected
action is already proceeding. Nevertheless, when you use 'Count within an entry barrier of
a protected unit, you should remember that the condition of the barrier is evaluated both
before and after queueing a given caller.

7.3.4 Unprotected Shared Variables
guideline
• Use calls on protected subprograms or entries to pass data between tasks rather than
unprotected shared variables.

• Do not use unprotected shared variables as a task synchronization device.
• Do not reference nonlocal variables in a guard .
• If an unprotected shared variable is necessary, use the pragma Volatile or Atomic.

example
This code will either print the same line more than once, fail to print some lines, or print
garbled lines (part of one line followed by part of another) nondeterministically. This is
because there is no synchronization or mutual exclusion between the task that reads a
command and the one that acts on it. Without knowledge about their relative scheduling,
the actual results cannot be predicted:

task body Line_Printer_Driver is

...

5 http://www.adaic.com/standards/95lrm/html/RM-9-9.html

184

http://www.adaic.com/standards/95lrm/html/RM-9-9.html

Communication

begin
loop

Current_Line := Line_Buffer;
-- send to device

end loop;
end Line_Printer_Driver;

task body Spool_Server is

...
begin

loop
Disk_Read (Spool_File, Line_Buffer);

end loop;
end Spool_Server;

The following example shows a vending machine that dispenses the amount requested into
an appropriately sized container. The guards reference the global variables Num_Requested
and Item_Count, leading to a potential problem in the wrong amount being dispensed into
an inappropriately sized container:
Num_Requested : Natural;
Item_Count : Natural := 1000;
task type Request_Manager (Personal_Limit : Natural := 1) is

entry Make_Request (Num : Natural);
entry Get_Container;
entry Dispense;

end Request_Manager;

task body Request_Manager is
begin

loop
select

accept Make_Request (Num : Natural) do
Num_Requested := Num;

end Make_Request;
or

when Num_Requested < Item_Count =>
accept Get_Container;
...

or
when Num_Requested < Item_Count =>

accept Dispense do
if Num_Requested <= Personal_Limit then

Ada.Text_IO.Put_Line ("Please pick up items.");
else

Ada.Text_IO.Put_Line ("Sorry! Requesting too many items.");
end if;

end Dispense;
end select;

end loop;
end Request_Manager;
R1 : Request_Manager (Personal_Limit => 10);
R2 : Request_Manager (Personal_Limit => 2);

The interleaving of the execution of R1 and R2 can lead to Num_Requested being changed
before the entry call to Dispense is accepted. Thus, R1 might receive fewer items than
requested or R2's request might be bounced because the request manager thinks that what
R2 is requesting exceeds R2's personal limit. By using the local variable, you will dispense
the correct amount. Furthermore, by using the pragma Volatile (Ada Reference Manual

185

Concurrency

1995, §C.6 7 [Annotated8]), you ensure that the Item_Count is reevaluated when the guards
are evaluated. Given that the variable Item_Count is not updated in this task body, the
compiler might otherwise have optimized the code and not generated code to reevaluate
Item_Count every time it is read:
Item_Count : Natural := 1000;
pragma Volatile (Item_Count);
task body Request_Manager is

Local_Num_Requested : Natural := 0;
begin

loop
select

accept Make_Request (Num : Natural) do
Local_Num_Requested := Num;

end Make_Request;
or

when Local_Num_Requested <= Personal_Limit =>
accept Get_Container;
...

or
when Local_Num_Requested < Item_Count =>

accept Dispense do
... -- output appropriate message if couldn't service request

end Dispense;
Item_Count := Item_Count - Local_Num_Requested;

end select;
end loop;

end Request_Manager;

rationale
There are many techniques for protecting and synchronizing data access. You must program
most of them yourself to use them. It is difficult to write a program that shares unprotected
data correctly. If it is not done correctly, the reliability of the program suffers.

Ada provides protected objects that encapsulate and provide synchronized access to pro-
tected data that is shared between tasks. Protected objects are expected to provide better
performance than the rendezvous that usually requires introduction of an additional task
to manage the shared data. The use of unprotected shared variables is more error-prone
than the protected objects or rendezvous because the programmer must ensure that the
unprotected shared variables are independently addressable and that the actions of reading
or updating the same unprotected shared variable are sequential (Ada Reference Manual
1995, §9.0 9 [Annotated10]; Rationale 1995, §II.9).

The first example above has a race condition requiring perfect interleaving of execution.
This code can be made more reliable by introducing a flag that is set by Spool_Server and
reset by Line_Printer_Driver. An if (condition flag) then delay ... else would be added to
each task loop in order to ensure that the interleaving is satisfied. However, notice that this
approach requires a delay and the associated rescheduling. Presumably, this rescheduling
overhead is what is being avoided by not using the rendezvous.

7 http://www.adaic.com/standards/95lrm/html/RM-C-6.html
9 http://www.adaic.com/standards/95lrm/html/RM-9-0.html

186

http://www.adaic.com/standards/95lrm/html/RM-C-6.html
http://www.adaic.com/standards/95lrm/html/RM-9-0.html

Communication

You might need to use an object in shared memory to communicate data between (Rationale
1995, §C.5):

• Ada tasks
• An Ada program and concurrent non-Ada processes
• An Ada program and hardware devices

If your environment supports the Systems Programming Annex (Ada Reference Manual
1995, Annex C), you should indicate whether loads and stores to the shared object must
be indivisible. If you specify the pragma Atomic, make sure that the object meets the
underlying hardware requirements for size and alignment. Multiple tasks sharing the pre-
defined random number generator and certain input/output subprograms can lead to prob-
lems with unprotected updates to shared state. The Ada Reference Manual 1995, §A.5.2 11
[Annotated12] points out the need for tasks to synchronize their access to the random number
generators (packages Ada.Numerics.Float_Random and Ada.Numerics.Discrete_Random).
See Guideline 7.7.5 for the I/O issue.

7.3.5 Selective Accepts and Entry Calls
guideline
• Use caution with conditional entry calls to task entries.
• Use caution with selective accept with else parts.
• Do not depend upon a particular delay in timed entry calls to task entries.
• Do not depend upon a particular delay in selective accepts with delay alternatives.
• Consider using protected objects instead of the rendezvous for data-oriented synchroniza-
tion.

example
The conditional entry call in the following code results in a potential race condition that
might degenerate into a busy waiting loop (i.e., perform the same calculation over and
over). The task Current_Position containing entry Request_New_Coordinates might never
execute if the loop-containing task (shown in the following code fragment) has a higher
priority than Current_Position because it does not release the processing resource:
task body Calculate_Flightpath is
begin

...
loop

select
Current_Position.Request_New_Coordinates (X, Y);
-- calculate projected location based on new coordinates
...

else
-- calculate projected location based on last locations
...

end select;

11 http://www.adaic.com/standards/95lrm/html/RM-A-5-2.html

187

http://www.adaic.com/standards/95lrm/html/RM-A-5-2.html

Concurrency

end loop;
...

end Calculate_Flightpath;

The addition of a delay, as shown, may allow Current_Position to execute until it reaches
an accept for Request_New_Coordinates:
task body Calculate_Flightpath is
begin

...
loop

select
Current_Position.Request_New_Coordinates(X, Y);
-- calculate projected location based on new coordinates
...

else
-- calculate projected location based on last locations
...

delay until Time_To_Execute;
Time_To_Execute := Time_To_Execute + Period;

end select;

end loop;
...

end Calculate_Flightpath;

The following selective accept with else again does not degenerate into a busy wait loop
only because of the addition of a delay statement:
task body Buffer_Messages is

...

begin

...

loop
delay until Time_To_Execute;

select
accept Get_New_Message (Message : in String) do

-- copy message to parameters
...

end Get_New_Message;
else -- Don't wait for rendezvous

-- perform built in test Functions
...

end select;

Time_To_Execute := Time_To_Execute + Period;
end loop;

...

end Buffer_Messages;

The following timed entry call might be considered an unacceptable implementation if lost
communications with the reactor for over 25 milliseconds results in a critical situation:

188

Communication

task body Monitor_Reactor is
...

begin
...
loop

select
Reactor.Status(OK);

or
delay 0.025;
-- lost communication for more that 25 milliseconds
Emergency_Shutdown;

end select;

-- process reactor status
...

end loop;
...

end Monitor_Reactor;

In the following ”selective accept with delay” example, the accuracy of the coordinate calcu-
lation function is bounded by time. For example, the required accuracy cannot be obtained
unless Period is within + or - 0.005 seconds. This period cannot be guaranteed because of
the inaccuracy of the delay statement:
task body Current_Position is
begin

...
loop

select
accept Request_New_Coordinates (X : out Integer;

Y : out Integer) do
-- copy coordinates to parameters
...

end Request_New_Coordinates;

or
delay until Time_To_Execute;

end select;

Time_To_Execute := Time_To_Execute + Period;
-- Read Sensors
-- execute coordinate transformations

end loop;
...

end Current_Position;

rationale
Use of these constructs always poses a risk of race conditions. Using them in loops, partic-
ularly with poorly chosen task priorities , can have the effect of busy waiting.

These constructs are very much implementation dependent. For conditional entry calls and
selective accepts with else parts, the Ada Reference Manual 1995, §9.7 13 [Annotated14] does
not define ”immediately.” For timed entry calls and selective accepts with delay alternatives,

13 http://www.adaic.com/standards/95lrm/html/RM-9-7.html

189

http://www.adaic.com/standards/95lrm/html/RM-9-7.html

Concurrency

implementors might have ideas of time that differ from each other and from your own. Like
the delay statement, the delay alternative on the select construct might wait longer than
the time required (see Guideline 6.1.7).

Protected objects offer an efficient means for providing data-oriented synchronization. Op-
erations on protected objects incur less execution overhead than tasks and are more efficient
for data synchronization and communication than the rendezvous. See Guideline 6.1.1 for
an example of this use of protected objects.

7.3.6 Communication Complexity
guideline
• Minimize the number of accept and select statements per task .
• Minimize the number of accept statements per entry.

example
Use:
accept A;
if Mode_1 then

-- do one thing
else -- Mode_2

-- do something different
end if;

rather than:
if Mode_1 then

accept A;
-- do one thing

else -- Mode_2
accept A;
-- do something different

end if;

rationale
This guideline reduces conceptual complexity. Only entries necessary to understand exter-
nally observable task behavior should be introduced. If there are several different accept
and select statements that do not modify task behavior in a way important to the user of
the task, there is unnecessary complexity introduced by the proliferation of select/accept
statements. Externally observable behavior important to the task user includes task tim-
ing behavior, task rendezvous initiated by the entry calls, prioritization of entries, or data
updates (where data is shared between tasks).

notes
Sanden (1994) argues that you need to trade off the complexity of the guards associated
with the accept statements against the number of select/accept statements. Sanden (1994)
shows an example of a queue controller for bank tellers where there are two modes, open and

190

Termination

closed. You can implement this scenario with one loop and two select statements, one for the
open mode and the other for the closed mode. Although you are using more select/accept
statements, Sanden (1994) argues that the resulting program is easier to understand and
verify.

7.4 Termination
The ability of tasks to interact with each other using Ada's intertask communication fea-
tures makes it especially important to manage planned or unplanned (e.g., in response to
a catastrophic exception condition) termination in a disciplined way. To do otherwise can
lead to a proliferation of undesired and unpredictable side effects as a result of the termi-
nation of a single task. The guidelines on termination focus on the termination of tasks.
Wherever possible, you should use protected objects (see Guideline 6.1.1), thus avoiding the
termination problems associated with tasks.

7.4.1 Avoiding Undesired Termination
guideline
• Consider using an exception handler for a rendezvous within the main loop inside each
task.

example
In the following example, an exception raised using the primary sensor is used to change
Mode to Degraded still allowing execution of the system:
...
loop

Recognize_Degraded_Mode:
begin

case Mode is
when Primary =>

select
Current_Position_Primary.Request_New_Coordinates (X, Y);

or
delay 0.25;
-- Decide whether to switch modes;

end select;

when Degraded =>

Current_Position_Backup.Request_New_Coordinates (X, Y);

end case;

...
exception

when Tasking_Error | Program_Error =>
Mode := Degraded;

end Recognize_Degraded_Mode;

end loop;
...

191

Concurrency

rationale
Allowing a task to terminate might not support the requirements of the system. Without
an exception handler for the rendezvous within the main task loop, the functions of the task
might not be performed.

notes
The use of an exception handler is the only way to guarantee recovery from an entry call
to an abnormal task. Use of the 'Terminated attribute to test a task's availability before
making the entry call can introduce a race condition where the tested task fails after the
test but before the entry call (see Guideline 6.2.3).

7.4.2 Normal Termination
guideline
• Do not create nonterminating tasks unintentionally.
• Explicitly shut down tasks that depend on library packages.
• Confirm that a task is terminated before freeing it with Ada.Unchecked_Deallocation.
• Consider using a select statement with a terminate alternative rather than an accept
statement alone.

• Consider providing a terminate alternative for every selective accept that does not require
an else part or a delay .

• Do not declare or create a task within a user-defined Finalize procedure after the envi-
ronment task has finished waiting for other tasks.

example
This task will never terminate:

task body Message_Buffer is

...
begin -- Message_Buffer

loop
select

when Head /= Tail => -- Circular buffer not empty
accept Retrieve (Value : out Element) do

...
end Retrieve;

or
when not ((Head = Index'First and then

Tail = Index'Last) or else
(Head /= Index'First and then
Tail = Index'Pred(Head)))

=> -- Circular buffer not full
accept Store (Value : in Element);

end select;
end loop;

...
end Message_Buffer;

192

Termination

rationale
The implicit environment task does not terminate until all other tasks have terminated.
The environment task serves as a master for all other tasks created as part of the execution
of the partition; it awaits termination of all such tasks in order to perform finalization of
any remaining objects of the partition. Thus, a partition will exist until all library tasks
are terminated.

A nonterminating task is a task whose body consists of a nonterminating loop with no
selective accept with terminate or a task that depends on a library package. Execution of
a subprogram or block containing a task cannot complete until the task terminates. Any
task that calls a subprogram containing a nonterminating task will be delayed indefinitely.

A task that depends on a library package cannot be forced to terminate using a selective
accept construct with alternative and should be terminated explicitly during program shut-
down. One way to explicitly shut down tasks that depend on library packages is to provide
them with exit entries and have the main subprogram call the exit entry just before it
terminates.

The Ada Reference Manual 1995, §13.1.2 15 [Annotated16] states that a bounded error results
from freeing a discriminated, unterminated task object. The danger lies in deallocating
the discriminants as a result of freeing the task object. The effect of unterminated tasks
containing bounded errors at the end of program execution is undefined.

Execution of an accept statement or of a selective accept statement without an else part, a
delay, or a terminate alternative cannot proceed if no task ever calls the entry(s) associated
with that statement. This could result in deadlock. Following the guideline to provide a
terminate alternative for every selective accept without an else or a delay entails program-
ming multiple termination points in the task body. A reader can easily ”know where to
look” for the normal termination points in a task body. The termination points are the end
of the body's sequence of statements and alternatives to select statements.

When the environment task has been terminated, either normally or abnormally, the lan-
guage does not specify whether to await a task activated during finalization of the controlled
objects in a partition. While the environment task is waiting for all other tasks in the par-
tition to complete, starting up a new task during finalization results in a bounded error
(Ada Reference Manual 1995, §10.2 17 [Annotated18]). The exception Program_Error can
be raised during creation or activation of such a task.

exceptions
If you are implementing a cyclic executive, you might need a scheduling task that does not
terminate. It has been said that no real-time system should be programmed to terminate.
This is extreme. Systematic shutdown of many real-time systems is a desirable safety
feature.

If you are considering programming a task not to terminate, be certain that it is not a
dependent of a block or subprogram from which the task's caller(s) will ever expect to

15 http://www.adaic.com/standards/95lrm/html/RM-13-1-2.html
17 http://www.adaic.com/standards/95lrm/html/RM-10-2.html

193

http://www.adaic.com/standards/95lrm/html/RM-13-1-2.html
http://www.adaic.com/standards/95lrm/html/RM-10-2.html

Concurrency

return. Because entire programs can be candidates for reuse (see Chapter 8), note that the
task (and whatever it depends upon) will not terminate. Also be certain that for any other
task that you do wish to terminate, its termination does not await this task's termination.
Reread and fully understand the Ada Reference Manual 1995, §9.3 19 [Annotated20] on ”Task
Dependence-Termination of Tasks.”

7.4.3 The Abort Statement
guideline
• Avoid using the abort statement.
• Consider using the asynchronous select statement rather than the abort statement.
• Minimize uses of the asynchronous select statement.
• Avoid assigning nonatomic global objects from a task or from the abortable part of an
asynchronous select statement.

example
If required in the application, provide a task entry for orderly shutdown.

The following example of asynchronous transfer of control shows a database transaction.
The database operation may be cancelled (through a special input key) unless the commit
transaction has begun. The code is extracted from the Rationale (1995, §9.4):
with Ada.Finalization;
package Txn_Pkg is

type Txn_Status is (Incomplete, Failed, Succeeded);
type Transaction is new Ada.Finalization.Limited_Controlled with private;
procedure Finalize (Txn : in out transaction);
procedure Set_Status (Txn : in out Transaction;

Status : in Txn_Status);
private

type Transaction is new Ada.Finalization.Limited_Controlled with
record

Status : Txn_Status := Incomplete;
pragma Atomic (Status);
. . . -- More components

end record;
end Txn_Pkg;

package body Txn_Pkg is

procedure Finalize (Txn : in out Transaction) is
begin

-- Finalization runs with abort and ATC deferred
if Txn.Status = Succeeded then

Commit (Txn);
else

Rollback (Txn);
end if;

end Finalize;
. . . -- body of procedure Set_Status

end Txn_Pkg;
--
-- sample code block showing how Txn_Pkg could be used:
declare

19 http://www.adaic.com/standards/95lrm/html/RM-9-3.html

194

http://www.adaic.com/standards/95lrm/html/RM-9-3.html

Termination

Database_Txn : Transaction;
-- declare a transaction, will commit or abort during finalization

begin
select -- wait for a cancel key from the input device

Input_Device.Wait_For_Cancel;
-- the Status remains Incomplete, so that the transaction will not commit

then abort -- do the transaction
begin

Read (Database_Txn, . . .);
Write (Database_Txn, . . .);
. . .
Set_Status (Database_Txn, Succeeded);
-- set status to ensure the transaction is committed

exception
when others =>

Ada.Text_IO.Put_Line ("Operation failed with unhandled exception:");
Set_Status (Database_Txn, Failed);

end;
end select;
-- Finalize on Database_Txn will be called here and, based on the recorded
-- status, will either commit or abort the transaction.

end;

rationale
When an abort statement is executed, there is no way to know what the targeted task
was doing beforehand. Data for which the target task is responsible might be left in an
inconsistent state. The overall effect on the system of aborting a task in such an uncontrolled
way requires careful analysis. The system design must ensure that all tasks depending on
the aborted task can detect the termination and respond appropriately.

Tasks are not aborted until they reach an abort completion point such as beginning or end
of elaboration, a delay statement, an accept statement, an entry call, a select statement,
task allocation, or the execution of an exception handler. Consequently, the abort statement
might not release processor resources as soon as you might expect. It also might not stop
a runaway task because the task might be executing an infinite loop containing no abort
completion points. There is no guarantee that a task will not abort until an abort completion
point in multiprocessor systems, but the task will almost always stop running right away.

An asynchronous select statement allows an external event to cause a task to begin execution
at a new point, without having to abort and restart the task (Rationale 1995, §9.3). Because
the triggering statement and the abortable statement execute in parallel until one of them
completes and forces the other to be abandoned, you need only one thread of control. The
asynchronous select statement improves maintainability because the abortable statements
are clearly delimited and the transfer cannot be mistakenly redirected.

In task bodies and in the abortable part of an asynchronous select, you should avoid as-
signing to nonatomic global objects, primarily because of the risk of an abort occurring
before the nonatomic assignment completes. If you have one or more abort statements in
your application and the assignment is disrupted, the target object can become abnormal,
and subsequent uses of the object lead to erroneous execution (Ada Reference Manual 1995,
§9.8 21 [Annotated22]). In the case of scalar objects, you can use the attribute 'Valid, but

21 http://www.adaic.com/standards/95lrm/html/RM-9-8.html

195

http://www.adaic.com/standards/95lrm/html/RM-9-8.html

Concurrency

there is no equivalent attribute for nonscalar objects. (See Guideline 5.9.1 for a discussion
of the 'Valid attribute.) You also can still safely assign to local objects and call operations
of global protected objects.

7.4.4 Abnormal Termination
guideline
• Place an exception handler for others at the end of a task body.
• Consider having each exception handler at the end of a task body report the task's demise.
• Do not rely on the task status to determine whether a rendezvous can be made with the
task.

example
This is one of many tasks updating the positions of blips on a radar screen. When started,
it is given part of the name by which its parent knows it. Should it terminate due to an
exception, it signals the fact in one of its parent's data structures:
task type Track (My_Index : Track_Index) is

...
end Track;

task body Track is

Neutral : Boolean := True;
begin -- Track

select
accept ...
...

or
terminate;

end select;
...

exception
when others =>

if not Neutral then
Station(My_Index).Status := Dead;

end if;
end Track;

rationale
A task will terminate if an exception is raised within it for which it has no handler. In
such a case, the exception is not propagated outside of the task (unless it occurs during
a rendezvous). The task simply dies with no notification to other tasks in the program.
Therefore, providing exception handlers within the task, and especially a handler for others,
ensures that a task can regain control after an exception occurs. If the task cannot proceed
normally after handling an exception, this affords it the opportunity to shut itself down
cleanly and to notify tasks responsible for error recovery necessitated by the abnormal
termination of the task.

You should not use the task status to determine whether a rendezvous can be made with
the task. If Task A depends on Task B and Task A checks the status flag before it ren-

196

Summary

dezvouses with Task B, there is a potential that Task B fails between the status test and
the rendezvous. In this case, Task A must provide an exception handler to handle the
Tasking_Error exception raised by the call to an entry of an abnormal task (see Guideline
6.3.1).

7.4.5 Circular Task Calls
guideline
• Do not call a task entry that directly or indirectly results in a call to an entry of the
original calling task.

rationale
A software failure known as task deadlock will occur if a task calls one of its own entries
directly or indirectly via a circular chain of calls.

7.4.6 Setting Exit Status
guideline
• Avoid race conditions in setting an exit status code from the main program when using
the procedure Ada.Command_Line.Set_Exit_Status.

• In a program with multiple tasks, encapsulate, serialize, and check calls to the procedure
Ada.Command_Line.Set_Exit_Status.

rationale
In accordance with the rules of Ada, tasks in library-level packages may terminate after the
main program task. If the program permits multiple tasks to use Set_Exit_Status, then
there can be no guarantee that any particular status value is the one actually returned.

7.5 Summary
7.5.1 concurrency options
• Consider using protected objects to provide mutually exclusive access to data.
• Consider using protected objects to control or synchronize access to data shared by mul-
tiple tasks .

• Consider using protected objects to implement synchronization, such as a passive resource
monitor.

• Consider encapsulating protected objects in the private part or body of a package.
• Consider using a protected procedure to implement an interrupt handler.
• Do not attach a protected procedure handler to a hardware interrupt if that interrupt
has a maximum priority greater than the ceiling priority assigned to the handler.

• Avoid the use of global variables in entry barriers.
• Avoid the use of barrier expressions with side effects.
• Use tasks to model selected asynchronous threads of control within the problem domain.

197

Concurrency

• Consider using tasks to define concurrent algorithms.
• Consider using rendezvous when your application requires synchronous unbuffered com-
munication.

• Consider using discriminants to minimize the need for an explicit initialization operation
(Rationale 1995, §9.1).

• Consider using discriminants to control composite components of the protected objects,
including setting the size of an entry family (Rationale 1995, §9.1).

• Consider using a discriminant to set the priority of a protected object (Rationale 1995,
§9.1).

• Consider using a discriminant to identify an interrupt to a protected object (Rationale
1995, §9.1).

• Consider declaring a task type with a discriminant to indicate (Rationale 1995, §9.6):
• Priority, storage size, and size of entry families of individual tasks of a type
• Data associated with a task (through an access discriminant)

• Consider using single task declarations to declare unique instances of concurrent tasks.
• Consider using single protected declarations to declare unique instances of protected
objects.

• Minimize dynamic creation of tasks because of the potentially high startup overhead;
reuse tasks by having them wait for new work on some appropriate entry queue.

• Do not rely on pragma Priority unless your compiler supports the Real-Time Annex (Ada
Reference Manual 1995, Annex D) and priority scheduling.

• Minimize risk of priority inversion by use of protected objects and ceiling priority.
• Do not rely upon task priorities to achieve a particular sequence of task execution.
• Do not depend on a particular delay being achievable (Nissen and Wallis 1984).
• Use a delay until not a delay statement to delay until a specific time has been reached.
• Avoid using a busy waiting loop instead of a delay.
• Carefully consider the placement of components of protected types within a tagged type
inheritance hierarchy.

• Consider using generics to provide extensibility of data types requiring the restrictions
provided by protected objects.

7.5.2 communication
• Minimize the work performed during a rendezvous .
• Minimize the work performed in the selective accept loop of a task.
• Consider using protected objects for data synchronization and communication.
• Provide a handler for exception Program_Error whenever you cannot avoid a selectiveac-
cept statement whose alternatives can all be closed (Honeywell 1986).

• Make systematic use of handlers for Tasking_Error.
• Be prepared to handle exceptions during a rendezvous .
• Consider using a when others exception handler.
• Do not depend on the values of the task attributes 'Callable or 'Terminated (Nissen and
Wallis 1984).

• Do not depend on attributes to avoid Tasking_Error on an entry call.
• For tasks, do not depend on the value of the entry attribute 'Count.
• Using the 'Count attribute with protected entries is more reliable than using the 'Count
attribute with task entries.

198

Summary

• Use calls on protected subprograms or entries to pass data between tasks rather than
unprotected shared variables.

• Do not use unprotected shared variables as a task synchronization device.
• Do not reference nonlocal variables in a guard .
• If an unprotected shared variable is necessary, use the pragma Volatile or Atomic.
• Use caution with conditional entry calls to task entries.
• Use caution with selective accepts with else parts.
• Do not depend upon a particular delay in timed entry calls to task entries.
• Do not depend upon a particular delay in selective accepts with delay alternatives.
• Consider using protected objects instead of the rendezvous for data-oriented synchroniza-
tion.

• Minimize the number of accept and select statements per task .
• Minimize the number of accept statements per entry.

7.5.3 termination
• Consider using an exception handler for a rendezvous within the main loop inside each
task.

• Do not create nonterminating tasks unintentionally.
• Explicitly shut down tasks that depend on library packages.
• Confirm that a task is terminated before freeing it with Ada.Unchecked_Deallocation.
• Consider using a select statement with a terminate alternative rather than an accept
statement alone.

• Consider providing a terminate alternative for every selective accept that does not require
an else part or a delay.

• Do not declare or create a task within a user-defined Finalize procedure after the envi-
ronment task has finished waiting for other tasks.

• Avoid using the abort statement.
• Consider using the asynchronous select statement rather than the abort statement.
• Minimize uses of the asynchronous select statement.
• Avoid assigning nonatomic global objects from a task or from the abortable part of an
asynchronous select statement.

• Place an exception handler for others at the end of a task body.
• Consider having each exception handler at the end of a task body report the task's demise.
• Do not rely on the task status to determine whether a rendezvous can be made with the
task.

• Do not call a task entry that directly or indirectly results in a call to an entry of the
original calling task.

• Avoid race conditions in setting an exit status code from the main program when using
the procedure Ada.Command_Line.Set_Exit_Status.

• In a program with multiple tasks, encapsulate, serialize, and check calls to the procedure
Ada.Command_Line.Set_Exit_Status.

199

8 Portability

8.1 Introduction
Discussions concerning portability usually concentrate on the differences in computer sys-
tems, but the development and run-time environment may also change:

portability (software)
The ease with which software can be transferred from one computer system or environment
to another (IEEE Dictionary 1984).

Most portability problems are not pure language issues. Portability involves hardware (byte
order, device I/O) and software (utility libraries, operating systems, run-time libraries).
This chapter will not address these challenging design issues.

This chapter does identify the more common portability problems that are specific to Ada
when moving from one platform or compiler to another. It also suggests ways that non-
portable code can be isolated. By using the implementation hiding features of Ada, the
cost of porting can be significantly reduced.

In fact, many language portability issues are solved by the strict definition of the Ada
language itself. In most programming languages, different dialects are prevalent as vendors
extend or dilute a language for various reasons: conformance to a programming environment
or features for a particular application domain. The Ada Compiler Validation Capability
(ACVC) was developed by the U.S. Department of Defense at the Ada Validation Facility,
ASD/SIDL, Wright-Patterson Air Force Base, to ensure that implementors strictly adhered
to the Ada standard.

As part of the strict definition of Ada, certain constructs are defined to be erroneous, and the
effect of executing an erroneous construct is unpredictable. Therefore, erroneous constructs
are obviously not portable. Erroneous constructs and bounded errors are discussed in
Guideline 5.9.10 and are not repeated in this chapter.

Most programmers new to the language expect Ada to eliminate all portability problems; it
definitely does not. Certain areas of Ada are not yet covered by validation. The definition
of Ada leaves certain details to the implementor. The compiler implementor's choices, with
respect to these details, affect portability.

The revisions to the Ada language approved in the 1995 standard generate a new area of
portability concerns. Some programs are intended to have a long life and may start in Ada
83 (Ada Reference Manual 1983) but transition to Ada 95 (Ada Reference Manual 1995).
Although this style guide focuses on the current Ada standard and does not address tran-
sition issues, there are portability issues relating to using certain features of the language.
These issues revolve around the language features designated as obsolescent in Annex J of
the Ada Reference Manual (1995).

201

Portability

The constructs of the language have been developed to satisfy a series of needs. These con-
structs can legitimately be used even though they may impact portability. There are some
general principles to enhancing portability that are exemplified by many of the guidelines
in this chapter. They are:

• Recognize those Ada constructs that may adversely affect portability on the relevant
implementations or platforms.

• Rely on those Ada constructs that depend on characteristics shared by all relevant im-
plementations. Avoid the use of those constructs whose implementation characteristics
vary on the relevant platforms.

• Localize and encapsulate nonportable features of a program if their use is essential.
• Highlight the use of constructs that may cause portability problems.

These guidelines cannot be applied thoughtlessly. Many of them involve a detailed un-
derstanding of the Ada model and its implementation. In many cases, you will have to
make carefully considered tradeoffs between efficiency and portability. Reading this chap-
ter should improve your insight into the tradeoffs involved. The material in this chapter
was largely acquired from three sources: the Ada Run-Time Environments Working Group
(ARTEWG) Catalogue of Ada Runtime Implementation Dependencies (ARTEWG 1986);
the Nissen and Wallis book on Portability and Style in Ada (Nissen and Wallis 1984); and
a paper written for the U.S. Air Force by SofTech on Ada Portability Guidelines (Pappas
1985). The last of these sources (Pappas 1985) encompasses the other two and provides
an in-depth explanation of the issues, numerous examples, and techniques for minimizing
portability problems. Conti (1987) is a valuable reference for understanding the latitude
allowed for implementors of Ada and the criteria often used to make decisions.

This chapter's purpose is to provide a summary of portability issues in the guideline format
of this book. The chapter does not include all issues identified in the references but only
the most significant. For an in-depth presentation, see Pappas (1985). A few additional
guidelines are presented here and others are elaborated upon where applicable. For further
reading on Ada I/O portability issues, see Matthews (1987), Griest (1989), and CECOM
(1989).

Some of the guidelines in this chapter cross reference and place stricter constraints on other
guidelines in this book. These constraints apply when portability is being emphasized.

Guidelines in this chapter are frequently worded ”consider . . .” because hard and fast rules
cannot apply in all situations. The specific choice you make in a given situation involves
design tradeoffs. The rationale for these guidelines is intended to give you insight into some
of these tradeoffs.

8.2 Fundamentals
This section introduces some generally applicable principles of writing portable Ada pro-
grams. It includes guidelines about the assumptions you should make with respect to a
number of Ada features and their implementations and guidelines about the use of other
Ada features to ensure maximum portability.

202

Fundamentals

8.2.1 Obsolescent Features
guideline
• In programs or components intended to have a long life, avoid using the features of Ada
declared as ”obsolescent” by Annex J of the Ada Reference Manual (1995), unless the use
of the feature is needed for backward compatibility with Ada 83 (Ada Reference Manual
1983).

• Document the use of any obsolescent features.
• Avoid using the following features:
• The short renamings of the packages in the predefined environment (e.g., Text_IO as
opposed to Ada.Text_IO)

• The character replacements of ! for |, : for #, and % for quotation marks
• Reduced accuracy subtypes of floating-point types
• The 'Constrained attribute as applied to private types
• The predefined package ASCII
• The exception Numeric_Error
• Various representation specifications, including at clauses, mod clauses, interrupt en-
tries, and the Storage_Size attribute

rationale
Ten years of reflection on the use of Ada 83 led to the conclusion that some features of the
original language are not as useful as originally intended. These features have been replaced
with others in the Ada 95 revision. It would have been desirable to remove the obsolescent
features completely, but that would have prevented the upward compatible transition of
programs from Ada 83 to Ada 95. Thus, the obsolescent features remain in the language
and are explicitly labeled as such in Annex J of the Ada Reference Manual (1995). The
features listed in Annex J are candidates for removal from the language during its next
revision. If a program's lifetime may extend beyond the next language revision, it should
avoid the obsolescent language features unless backward compatibility with Ada 83 forces
their use.

exceptions
When you instantiate Ada.Text_IO.Float_IO, the values of the Default_Fore and De-
fault_Aft fields are set from the values of the 'Fore and 'Aft attributes of the actual floating-
point type used in the instantiation. If you declare a reduced accuracy floating-point type
that you then use to instantiate Ada.Text_IO.Float_IO, the output field widths are deter-
mined from the reduced accuracy type, although the implementation accuracy is unchanged
(Rationale 1995, §3.3).

8.2.2 Global Assumptions
guideline
• Make informed assumptions about the support provided for the following on potential
target platforms:
• Number of bits available for type Integer (range constraints)

203

Portability

• Number of decimal digits of precision available for floating-point types
• Number of bits available for fixed-point types (delta and range constraints)
• Number of characters per line of source text
• Number of bits for Root_Integer expressions
• Number of seconds for the range of Duration
• Number of milliseconds for Duration'Small
• Minimum and maximum scale for decimal types

• Avoid assumptions about the values and the number of values included in the type Char-
acter.

instantiation
• These are minimum values (or minimum precision in the case of Duration'Small) that
a project or application might assume that an implementation provides. There is no
guarantee that a given implementation provides more than the minimum, so these would
be treated by the project or application as maximum values also.
• 16 bits available for type Integer (-2**15 .. 2**15 - 1)
• 6 decimal digits of precision available for floating-point types
• 24 bits available for fixed-point types
• 200 characters per line of source text
• 16 bits for expressions
• -86_400 .. 86_400 seconds (1 day) for the range of Duration (as specified in Ada
Reference Manual 1995, §9.6 1 [Annotated2])

• 20 milliseconds for Duration'Small (as specified in Ada Reference Manual 1995, §9.6 3
[Annotated4])

rationale
Some assumptions must be made with respect to certain implementation-specific values.
The exact values assumed should cover the majority of the target equipment of interest.
Choosing the lowest common denominator for values improves portability. Implementations
may supply an alternate character set specific to a locale or environment. For instance, the
implementation on an IBM-compatible PC may support that machine's native character
set rather than Latin 1. As a result, some character values may or may not be supported,
for example, the smiley face.

notes
Of the microcomputers currently available for incorporation within embedded systems, 16-
bit and 32-bit processors are prevalent. Using current representation schemes, 6 decimal
digits of floating point accuracy imply a representation mantissa at least 21 bits wide,
leaving 11 bits for exponent and sign within a 32-bit representation. This correlates with
the data widths of floating point hardware currently available for the embedded systems
market. A 32-bit minimum on fixed-point numbers correlates with the accuracy and storage

1 http://www.adaic.com/standards/95lrm/html/RM-9-6.html
3 http://www.adaic.com/standards/95lrm/html/RM-9-6.html

204

http://www.adaic.com/standards/95lrm/html/RM-9-6.html
http://www.adaic.com/standards/95lrm/html/RM-9-6.html

Fundamentals

requirements of floating point numbers. The 16-bit example for Root_Integer expressions
matches that for Integer storage. (The 32-bit integers can be assumed if the application
will only be considered for 32-bit processors with a corresponding 32-bit operating system
and supporting compiler.)

The values for the range and accuracy of values of the predefined type Duration are the
limits expressed in the Ada Reference Manual 1995, §9.6 5 [Annotated6]. You should not
expect an implementation to provide a wider range or a finer granularity.

A standard-mode Ada character set of Latin 1 can be assumed in most cases for the con-
tents and internal behavior of type Character and packages Character.Latin_1, Charac-
ter.Handling, and Strings.Maps. However, this does not mean that the target hardware
platform is capable of displaying the entire character set. You should not use a nonstan-
dard Ada character set unless intentionally producing a nonportable user interface with a
specific purpose.

8.2.3 Comments
guideline
• Use highlighting comments for each package, subprogram, and task where any non-
portable features are present.

• For each nonportable feature employed, describe the expectations for that feature.

example
--
package Memory_Mapped_IO is

-- WARNING - This package is implementation specific.
-- It uses absolute memory addresses to interface with the I/O
-- system. It assumes a particular printer's line length.
-- Change memory mapping and printer details when porting.
Printer_Line_Length : constant := 132;
type Data is array (1 .. Printer_Line_Length) of Character;
procedure Write_Line (Line : in Data);

end Memory_Mapped_IO;
--
with System;
with System.Storage_Elements;
package body Memory_Mapped_IO is

-- WARNING: Implementation specific memory address

Buffer_Address : constant System.Address
:= System.Storage_Elements.To_Address(16#200#);

procedure Write_Line (Line : in Data) is

Buffer : Data;
for Buffer'Address use Buffer_Address;

begin -- Write_Line
-- perform output operation through specific memory locations.
...

end Write_Line;

5 http://www.adaic.com/standards/95lrm/html/RM-9-6.html

205

http://www.adaic.com/standards/95lrm/html/RM-9-6.html

Portability

end Memory_Mapped_IO;
--

rationale
Explicitly commenting each breach of portability will raise its visibility and aid in the porting
process. A description of the nonportable feature's expectations covers the common case
where vendor documentation of the original implementation is not available to the person
performing the porting process.

8.2.4 Main Subprogram
guideline
• Consider using only a parameterless procedure as the main subprogram.
• Consider using Ada.Command_Line for accessing values from the environment, but rec-
ognize that this package's behavior and even its specification are nonportable (see Guide-
line 7.1.6).

• Encapsulate and document all uses of package Ada.Command_Line.

example
The following example encapsulates the arguments for a hypothetical ”execution mode”
argument passed from the environment. It encapsulates both the expected position and the
expected values of the argument, as well as provides a default in cases where the environment
was unable to provide the information:
package Environment is

type Execution_Mode is (Unspecified, Interactive, Batch);

function Execution_Argument return Execution_Mode;

...

end Environment;

--

with Ada.Command_Line; use Ada.Command_Line;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;

package body Environment is

function Execution_Argument return Execution_Mode is

Execution_Argument_Number : constant := 1;

Interactive_Mode_String : constant String := "-i";
Batch_Mode_String : constant String := "-b";

begin
if Argument_Count < Execution_Argument_Number then

return Unspecified;
elsif To_Unbounded_String (Argument (Execution_Argument_Number)) =

Interactive_Mode_String then
return Interactive;

206

Fundamentals

elsif To_Unbounded_String (Argument (Execution_Argument_Number)) =
Batch_Mode_String then

return Batch;
else

return Unspecified;
end if;

end Execution_Argument;

end Environment;

rationale
The predefined language environment declares the package Ada.Command_Line, providing
a standardized way for a program to obtain the values of a command line. Because all Ada
compilers must implement the packages in the predefined language environment, you can
create a program that is more portable, maintainable, and readable by using this package.
You should, however, be aware that even though the language defines the objects and type
profiles of this package, it does not force a relationship between the function results and
any other entity or operation, and thus, allows the possibility of a nonportable behavior
and specification.

The value returned by the function Ada.Command_Line.Argument_Count is
implementation-dependent. Different operating systems follow different conventions
regarding the parsing and meaning of command line parameters. To enhance your
program's portability, assume the simplest case: that the external execution environment
does not support passing arguments to a program.

Some operating systems are capable of acquiring and interpreting returned integer values
near 0 from a function, but many others cannot. Further, many real-time, embedded
systems will not be designed to terminate, so a function or a procedure having parameters
with modes out or in out will be inappropriate to such applications.

This leaves procedures with in parameters. Although some operating systems can pass
parameters into a program as it starts, others are not. Also, an implementation may not
be able to perform type checking on such parameters even if the surrounding environment
is capable of providing them.

notes
Real-time, embedded applications may not have an ”operator” initiating the program to
supply the parameters, in which case it would be more appropriate for the program to have
been compiled with a package containing the appropriate constant values or for the program
to read the necessary values from switch settings or a downloaded auxiliary file. In any case,
the variation in surrounding initiating environments is far too great to depend upon the
kind of last-minute (program) parameterization implied by (subprogram) parameters to the
main subprogram. POSIX 5 provides a standard operating system command line interface
that might be a more appropriate alternative to the Ada command line facility depending
on the implementation family of an application.

207

Portability

8.2.5 Encapsulating Implementation Dependencies
guideline
• Create packages specifically designed to isolate hardware and implementation dependen-
cies and designed so that their specification will not change when porting.

• Clearly indicate the objectives if machine or solution efficiency is the reason for hardware
or implementation-dependent code.

• For the packages that hide implementation dependencies, maintain different package
bodies for different target environments.

• Isolate interrupt receiving tasks into implementation-dependent packages.
• Refer to Annex M of the Ada Reference Manual (1995) for a list of implementation-
dependent features.

example
See Guideline 7.1.3.

rationale
Encapsulating hardware and implementation dependencies in a package allows the remain-
der of the code to ignore them and, thus, to be fully portable. It also localizes the depen-
dencies, making it clear exactly which parts of the code may need to change when porting
the program.

Some implementation-dependent features may be used to achieve particular performance or
efficiency objectives. Commenting these objectives ensures that the programmer can find
an appropriate way to achieve them when porting to a different implementation or explicitly
recognize that they cannot be achieved.

Interrupt entries are implementation-dependent features that may not be supported (e.g.,
VAX Ada uses pragmas to assign system traps to ”normal” rendezvous). However, interrupt
entries cannot be avoided in most embedded, real-time systems, and it is reasonable to
assume that they are supported by an Ada implementation. The value for an interrupt is
implementation-defined. Isolate it.

notes
You can use Ada to write machine-dependent programs that take advantage of an imple-
mentation in a manner consistent with the Ada model but that make particular choices
where Ada allows implementation freedom. These machine dependencies should be treated
in the same way as any other implementation-dependent features of the code.

8.2.6 Implementation-Added Features
guideline
• Avoid the use of vendor-supplied packages.
• Avoid the use of features added to the predefined packages that are not specified in the
Ada language definition or Specialized Needs Annexes.

208

Fundamentals

rationale
Vendor-added features are not likely to be provided by other implementations. Even if
a majority of vendors eventually provide similar additional features, they are unlikely to
have identical formulations. Indeed, different vendors may use the same formulation for
(semantically) entirely different features. See Guideline 7.5.2 for further information on
vendor-supplied exceptions.

Ada has introduced a number of new pragmas and attributes that were not present in
Ada 83 (Ada Reference Manual 1983). These new pragmas and attributes may clash with
implementation-defined pragmas and attributes.

exceptions
There are many kinds of applications that require the use of these features. Examples
include multilingual systems that standardize on a vendor's file system, applications that
are closely integrated with vendor products (i.e., user interfaces), and embedded systems
for performance reasons. Isolate the use of these features into packages.

If a vendor-supplied package is provided in compilable source code form, use of the package
does not make a program nonportable provided that the package does not contain any
nonportable code and can be lawfully included in your program.

8.2.7 Specialized Needs Annexes
guideline
• Use features defined in the Specialized Needs Annexes rather than vendor-defined fea-
tures.

• Document clearly the use of any features from the Specialized Needs Annexes (systems
programming, real-time systems, distributed systems, information systems, numerics, and
safety and security).

rationale
The Specialized Needs Annexes define standards for specific application areas without ex-
tending the syntax of the language. You can port a program with specific domain needs
(e.g., distributed systems, information systems) across vendor implementations more easily
if they support the features standardized in an annex rather than rely on specific vendor
extensions. The purpose of the annexes is to provide a consistent and uniform way to ad-
dress issues faced in several application areas where Ada is expected to be used. Because
different compilers will support different sets of annexes if any, you may have portability
problems if you rely on the features defined in any given annex.

The Specialized Needs Annexes provide special capabilities that go beyond the core language
definition. Because compilers are not required to support the special-purpose annexes, you
should localize your use of these features where possible. By documenting their usage, you
are leaving a record of potential porting difficulties for future programmers.

209

Portability

8.2.8 Dependence on Parameter Passing Mechanism
guideline
• Do not write code whose correct execution depends on the particular parameter passing
mechanism used by an implementation (Ada Reference Manual 1995, §6.2 7 [Annotated8];
Cohen 1986).

• If a subprogram has more than one formal parameter of a given subtype, at least one of
which is [in] out, make sure that the subprogram can properly handle the case when both
formal parameters denote the same actual object.

example
The output of this program depends on the particular parameter passing mechanism that
was used:
--
with Ada.Integer_Text_IO;
procedure Outer is

type Coordinates is
record

X : Integer := 0;
Y : Integer := 0;

end record;
Outer_Point : Coordinates;

procedure Inner (Inner_Point : in out Coordinates) is
begin

Inner_Point.X := 5;
-- The following line causes the output of the program to
-- depend on the parameter passing mechanism.
Ada.Integer_Text_IO.Put(Outer_Point.X);

end Inner;

begin -- Outer
Ada.Integer_Text_IO.Put(Outer_Point.X);
Inner(Outer_Point);
Ada.Integer_Text_IO.Put(Outer_Point.X);

end Outer;
--

If the parameter passing mechanism is by copy, the results on the standard output file are:

0 0 5

If the parameter passing mechanism is by reference, the results are:

0 5 5

The following code fragment shows where there is a potential for bounded error when a
procedure is called with actual parameters denoting the same object:
procedure Test_Bounded_Error (Parm_1 : in out Integer;

Parm_2 : in out Integer) is
procedure Inner (Parm : in out Integer) is
begin

Parm := Parm * 10;

7 http://www.adaic.com/standards/95lrm/html/RM-6-2.html

210

http://www.adaic.com/standards/95lrm/html/RM-6-2.html

Fundamentals

end Inner;
begin

Parm_2 := 5;
Inner (Parm_1);

end Test_Bounded_Error;

In executing the procedure Test_Bounded_Error, both Parm_1 and Parm_2 denote the
object Actual_Parm. After executing the first statement, the object Actual_Parm has
the value 5. When the procedure Inner is called, its formal parameter Parm denotes Ac-
tual_Parm. It cannot be determined whether it denotes the old value of Parm_1, in this
case 1, or the new value, in this case 5.
Actual_Parm : Integer := 1;
...
Test_Bounded_Error (Actual_Parm, Actual_Parm); -- potential bounded error

rationale
Certain composite types (untagged records and arrays) can be passed either by copy or by
reference. If there are two or more formal parameters of the same type, one or more of which
is writable, then you should document whether you assume that these formal parameters do
not denote the same actual object. Similarly, if a subprogram that has a formal parameter
of a given subtype also makes an up-level reference to an object of this same type, you
should document whether you assume that the formal parameter denotes a different object
from the object named in the up-level reference. In these situations where an object can
be accessed through distinct formal parameter paths, the exception Program_Error may
be raised, the new value may be read, or the old value of the object may be used (Ada
Reference Manual 1995, §6.2 9 [Annotated10]).

See also Guideline 8.2.7.

exceptions
Frequently, when interfacing Ada to foreign code, dependence on parameter-passing mech-
anisms used by a particular implementation is unavoidable. In this case, isolate the calls
to the foreign code in an interface package that exports operations that do not depend on
the parameter-passing mechanism.

8.2.9 Arbitrary Order Dependencies
guideline
• Avoid depending on the order in which certain constructs in Ada are evaluated.

9 http://www.adaic.com/standards/95lrm/html/RM-6-2.html

211

http://www.adaic.com/standards/95lrm/html/RM-6-2.html

Portability

example
The output of this program depends upon the order of evaluation of subprogram parameters,
but the Ada Reference Manual 1995, §6.4 11 [Annotated12] specifies that these evaluations
are done in an arbitrary order:
package Utilities is

function Unique_ID return Integer;
end Utilities;

package body Utilities is

ID : Integer := 0;

function Unique_ID return Integer is
begin

ID := ID + 1;
return ID;

end Unique_ID;

end Utilities;

--
with Ada.Text_IO;
with Utilities; use Utilities;
procedure P is
begin

Ada.Text_IO.Put_Line (Integer'Image(Unique_ID) & Integer'Image(Unique_ID));
end P;

If the parameters to the ”&” function are evaluated in textual order, the output is:

1 2

If the parameters are evaluated in the reverse order, the output is:

2 1

rationale
The Ada language defines certain evaluations to occur in arbitrary order (e.g., subprogram
parameters). While a dependency on the order of evaluation may not adversely affect the
program on a certain implementation, the code might not execute correctly when it is
ported. For example, if two actual parameters of a subprogram call have side effects, the
effect of the program could depend on the order of evaluation (Ada Reference Manual 1995,
§1.1.4 13 [Annotated14]). Avoid arbitrary order dependencies, but also recognize that even
an unintentional error of this kind could prohibit portability.

8.3 Numeric Types and Expressions
A great deal of care was taken with the design of the Ada features related to numeric
computations to ensure that the language could be used in embedded systems and math-

11 http://www.adaic.com/standards/95lrm/html/RM-6-4.html
13 http://www.adaic.com/standards/95lrm/html/RM-1-1-4.html

212

http://www.adaic.com/standards/95lrm/html/RM-6-4.html
http://www.adaic.com/standards/95lrm/html/RM-1-1-4.html

Numeric Types and Expressions

ematical applications where precision was important. As far as possible, these features
were made portable. However, there is an inevitable tradeoff between maximally exploiting
the available precision of numeric computation on a particular machine and maximizing the
portability of Ada numeric constructs. This means that these Ada features, particularly nu-
meric types and expressions, must be used with great care if full portability of the resulting
program is to be guaranteed.

8.3.1 Predefined Numeric Types
guideline
• Avoid using the predefined numeric types in package Standard. Use range and digits
declarations and let the implementation pick the appropriate representation.

• For programs that require greater accuracy than that provided by the global assumptions,
define a package that declares a private type and operations as needed; see Pappas (1985)
for a full explanation and examples.

• Consider using predefined numeric types (Integer, Natural, Positive) for:
• Indexes into arrays where the index type is not significant, such as type String
• ”Pure” numbers, that is, numbers with no associated physical unit (e.g., exponents)
• Values whose purpose is to control a repeat or iteration count

example
The second and third examples below are not representable as subranges of Integer on
a machine with a 16-bit word. The first example below allows a compiler to choose a
multiword representation, if necessary.

Use:
type Second_Of_Day is range 0 .. 86_400;

rather than:
type Second_Of_Day is new Integer range 1 .. 86_400;

or:
subtype Second_Of_Day is Integer range 1 .. 86_400;

rationale
An implementor is free to define the range of the predefined numeric types. Porting code
from an implementation with greater accuracy to one of lesser accuracy is a time consuming
and error-prone process. Many of the errors are not reported until run-time.

This applies to more than just numerical computation. An easy-to-overlook instance of this
problem occurs if you neglect to use explicitly declared types for integer discrete ranges
(array sizes, loop ranges, etc.) (see Guidelines 5.5.1 and 5.5.2). If you do not provide

213

Portability

an explicit type when specifying index constraints and other discrete ranges, a predefined
integer type is assumed.

The predefined numeric types are useful when you use them wisely. You should not use them
to avoid declaring numeric types—then you lose the benefits of strong typing. When your
application deals with different kinds of quantities and units, you should definitely separate
them through the use of distinct numeric types. However, if you are simply counting the
number of iterations in an iterative approximation algorithm, declaring a special integer
type is probably overkill. The predefined exponentiation operators ** require an integer as
the type of its right operand.

You should use the predefined types Natural and Positive for manipulating certain kinds
of values in the predefined language environment. The types String and Wide_String use
an index of type Positive. If your code indexes into a string using an incompatible integer
type, you will be forced to do type conversion, reducing its readability. If you are performing
operations like slices and concatenation, the subtype of your numeric array index is probably
insignificant and you are better off using a predefined subtype. On the other hand, if your
array represents a table (e.g., a hash table), then your index subtype is significant, and you
should declare a distinct index type.

notes
There is an alternative that this guideline permits. As Guideline 7.1.5 suggests, implemen-
tation dependencies can be encapsulated in packages intended for that purpose. This could
include the definition of a 32-bit integer type. It would then be possible to derive additional
types from that 32-bit type.

8.3.2 Accuracy Model
guideline
• Use an implementation that supports the Numerics Annex (Ada Reference Manual 1995,
Annex G) when performance and accuracy are overriding concerns.

rationale
The Numerics Annex defines the accuracy and performance requirements for floating- and
fixed-point arithmetic. The Annex provides a ”strict” mode in which the compiler must
support these requirements. To guarantee that your program's numerical performance is
portable, you should compile and link in the strict mode. If your program relies upon the
numeric properties of the strict mode, then it will only be portable to other environments
that support the strict numerics mode.

The accuracy of floating-point numbers is based on what machine numbers can be repre-
sented exactly in storage. A computational result in a register can fall between two machine
numbers when the register contains more bits than storage. You can step through the ma-
chine numbers using the attributes 'Pred and 'Succ. Other attributes return values of the
mantissa, exponent, radix, and other characteristics of floating- and fixed-point numbers.

214

Numeric Types and Expressions

8.3.3 Accuracy Analysis
guideline
• Carefully analyze what accuracy and precision you really need.

rationale
Floating-point calculations are done with the equivalent of the implementation's predefined
floating-point types. The effect of extra ”guard” digits in internal computations can some-
times lower the number of digits that must be specified in an Ada declaration. This may not
be consistent over implementations where the program is intended to be run. It may also
lead to the false conclusion that the declared types are sufficient for the accuracy required.

You should choose the numeric type declarations to satisfy the lowest precision (smallest
number of digits) that will provide the required accuracy. Careful analysis will be necessary
to show that the declarations are adequate. When you move to a machine with less precision,
you probably can use the same type declaration.

8.3.4 Accuracy Constraints
guideline
• Do not press the accuracy limits of the machine(s).

rationale
Just because two different machines use the same number of digits in the mantissa of a
floating-point number does not imply they will have the same arithmetic properties. Some
Ada implementations may give slightly better accuracy than required by Ada because they
make efficient use of the machine. Do not write programs that depend on this.

8.3.5 Comments
guideline
• Comment the analysis and derivation of the numerical aspects of a program.

rationale
Decisions and background about why certain precisions are required in a program are im-
portant to program revision or porting. The underlying numerical analysis leading to the
program should be commented.

215

Portability

8.3.6 Subexpression Evaluation
guideline
• Anticipate the range of values of subexpressions to avoid exceeding the underlying range
of their base type. Use derived types, subtypes, factoring, and range constraints on
numeric types (see Guidelines 3.4.1, 5.3.1, and 5.5.3).

example
This example is adapted from the Rationale (1995, §3.3):
with Ada.Text_IO;
with Ada.Integer_Text_IO;
procedure Demo_Overflow is
-- assume the predefined type Integer has a 16-bit range

X : Integer := 24_000;
Y : Integer;

begin -- Demo_Overflow
y := (3 * X) / 4; -- raises Constraint_Error if the machine registers used

are 16-bit
-- mathematically correct intermediate result if 32-bit registers
Ada.Text_IO.Put ("(");
Ada.Integer_Text_IO.Put (X);
Ada.Text_IO.Put (" * 3) / 4 = ");
Ada.Integer_Text_IO.Put (Y);

exception
when Constraint_Error =>

Ada.Text_IO.Put_Line ("3 * X too big for register!");
end Demo_Overflow;

rationale
The Ada language does not require that an implementation perform range checks on subex-
pressions within an expression. Ada does require that overflow checks be performed. Thus,
depending on the order of evaluation and the size of the registers, a subexpression will either
overflow or produce the mathematically correct result. In the event of an overflow, you will
get the exception Constraint_Error. Even if the implementation on your program's current
target does not result in an overflow on a subexpression evaluation, your program might be
ported to an implementation that does.

8.3.7 Relational Tests
guideline
• Consider using <= and >= to do relational tests on real valued arguments, avoiding the

<, >, =, and /= operations.
• Use values of type attributes in comparisons and checking for small values.

example
The following examples test for (1) absolute ”equality” in storage, (2) absolute ”equality” in
computation, (3) relative ”equality” in storage, and (4) relative ”equality” in computation:

216

Numeric Types and Expressions

abs (X - Y) <= Float_Type'Model_Small -- (1)
abs (X - Y) <= Float_Type'Base'Model_Small -- (2)
abs (X - Y) <= abs X * Float_Type'Model_Epsilon -- (3)
abs (X - Y) <= abs X * Float_Type'Base'Model_Epsilon -- (4)

And, specifically, for ”equality” to 0:
abs X <= Float_Type'Model_Small -- (1)
abs X <= Float_Type'Base'Model_Small -- (2)
abs X <= abs X * Float_Type'Model_Epsilon -- (3)
abs X <= abs X * Float_Type'Base'Model_Epsilon -- (4)

rationale
Strict relational comparisons (<, >, =, /=) are a general problem with computations
involving real numbers. Because of the way comparisons are defined in terms of model
intervals, it is possible for the values of the comparisons to depend on the implementation.
Within a model interval, the result of comparing two values is nondeterministic if the values
are not model numbers. In general, you should test for proximity rather than equality as
shown in the examples. See also Rationale (1995, §§G.4.1 and G.4.2.).

Type attributes are the primary means of symbolically accessing the implementation of
the Ada numeric model. When the characteristics of the model numbers are accessed
by type attributes, the source code is portable. The appropriate model numbers of any
implementation will then be used by the generated code.

Although 0 is technically not a special case, it is often overlooked because it looks like the
simplest and, therefore, safest case. But in reality, each time comparisons involve small
values, you should evaluate the situation to determine which technique is appropriate.

notes
Regardless of language, real-valued computations have inaccuracy. That the corresponding
mathematical operations have algebraic properties usually introduces some confusion. This
guideline explains how Ada deals with the problem that most languages face.

8.3.8 Decimal Types and the Information Systems Annex
guideline
• In information systems, declare different numeric decimal types to correspond to different
scales (Brosgol, Eachus, and Emery 1994).

• Create objects of different decimal types to reflect different units of measure (Brosgol,
Eachus, and Emery 1994).

• Declare subtypes of the appropriately scaled decimal type to provide appropriate range
constraints for application-specific types.

• Encapsulate each measure category in a package (Brosgol, Eachus, and Emery 1994).
• Declare as few decimal types as possible for unitless data (Brosgol, Eachus, and Emery
1994).

217

Portability

• For decimal calculations, determine whether the result should be truncated toward 0 or
rounded.

• Avoid decimal types and arithmetic on compilers that do not support the Information
Systems Annex (Ada Reference Manual 1995, Annex F) in full.

example
-- The salary cap today is $500,000; however this can be expanded to
$99,999,999.99.
type Executive_Salary is delta 0.01 digits 10 range 0 .. 500_000.00;

--
package Currency is

type Dollars is delta 0.01 digits 12;

type Marks is delta 0.01 digits 12;

type Yen is delta 0.01 digits 12;

function To_Dollars (M : Marks) return Dollars;
function To_Dollars (Y : Yen) return Dollars;

function To_Marks (D : Dollars) return Marks;
function To_Marks (Y : Yen) return Marks;

function To_Yen (D : Dollars) return Yen;
function To_Yen (M : Marks) return Yen;

end Currency;

rationale
The Ada language does not provide any predefined decimal types. Therefore, you need
to declare decimal types for the different scales you will need to use. Differences in scale
and precision must be considered in deciding whether or not a common type will suffice
(Brosgol, Eachus, and Emery 1994).

You need different types for objects measured in different units. This allows the compiler to
detect mismatched values in expressions. If you declare all decimal objects to be of a single
type, you forego the benefits of strong typing. For example, in an application that involves
several currencies, each currency should be declared as a separate type. You should provide
appropriate conversions between different currencies.

You should map data with no particular unit of measure to a small set of types or a single
type to avoid the explosion of conversions between numeric types.

Separate the range requirement on a decimal type from its precision, i.e., the number of
significant digits required. From the point of view of planning for change and ease of
maintenance, you can use the digit's value to accommodate future growth in the values
to be stored in objects of the type. For example, you may want to anticipate growth for
database values and report formats. You can constrain the values of the type through a
range constraint that matches current needs. It is easier to modify the range and avoid
redefining databases and reports.

218

Numeric Types and Expressions

Ada automatically truncates toward 0. If your requirements are to round the decimal result,
you must explicitly do so using the 'Round attribute.

The core language defines the basic syntax of and operations on decimal types. It does not
specify, however, the minimum number of significant digits that must be supported. Nor
does the core language require the compiler to support values of Small other than powers
of 2, thus enabling the compiler effectively to reject a decimal declaration (Ada Reference
Manual 1995, §3.5.9 15 [Annotated16]). The Information Systems Annex provides additional
support for decimal types. It requires a minimum of 18 significant digits. It also specifies a
Text_IO.Editing package that provides support analogous to the COBOL picture approach.

8.3.9 Storage Control
The management of dynamic storage can vary between Ada environments. In fact, some en-
vironments do not provide any deallocation. The following Ada storage control mechanisms
are implementation-dependent and should be used with care in writing portable programs.

8.3.10 Representation Clause
guideline
• Do not use a representation clause to specify number of storage units.

rationale
The meaning of the 'Storage_Size attribute is ambiguous; specifying a particular value will
not improve portability. It may or may not include space allocated for parameters, data,
etc. Save the use of this feature for designs that must depend on a particular vendor's
implementation.

notes
During a porting activity, it can be assumed that any occurrence of storage specification
indicates an implementation dependency that must be redesigned.

8.3.11 Access-to-Subprogram Values
guideline
• Do not compare access-to-subprogram values.

rationale
The Ada Reference Manual 1995, §3.10.2 17 [Annotated18] explains that an ”implementation
may consider two access-to-subprogram values to be unequal, even though they designate

15 http://www.adaic.com/standards/95lrm/html/RM-3-5-9.html
17 http://www.adaic.com/standards/95lrm/html/RM-3-10-2.html

219

http://www.adaic.com/standards/95lrm/html/RM-3-5-9.html
http://www.adaic.com/standards/95lrm/html/RM-3-10-2.html

Portability

the same subprogram. This might be because one points directly to the subprogram, while
the other points to a special prologue that performs an Elaboration_Check and then jumps
to the subprogram.” The Ada Reference Manual 1995, §4.5.2 19 [Annotated20] states that it
is ”unspecified whether two access values that designate the same subprogram but are the
result of distinct evaluations of Access attribute references are equal or unequal.”

See also Guideline 5.3.4.

exceptions
If you must compare an access-to-subprogram value, you should define a constant using the
access-to-subprogram value and make all future comparisons against the constant. However,
if you attempt to compare access-to-subprogram values with different levels of indirection,
the values might still be unequal, even if designating the same subprogram.

8.3.12 Storage Pool Mechanisms
guideline
• Consider using explicitly defined storage pool mechanisms.

example

See the Ada Reference Manual 1995, §13.11.2 21 [Annotated22].

You use allocators as before. Instead of using unchecked deallocation, you maintain your
own free lists of objects that are no longer in use and available for reuse.

You use allocators and possibly unchecked deallocation; however, you implement a storage
pool and associate it with the access type(s) via a Storage_Pool clause. You can use
this technique to implement a mark/release storage management paradigm, which might
be significantly faster than an allocate/deallocate paradigm. Some vendors may provide a
mark/release package as part of their Ada environment.

You do not use allocators, but instead use unchecked conversion from the address and do
all your own default initialization, etc. It is unlikely you would use this last option because
you lose automatic default initialization.

8.4 Tasking
The definition of tasking in the Ada language leaves many characteristics of the tasking
model up to the implementor. This allows a vendor to make appropriate tradeoffs for the
intended application domain, but it also diminishes the portability of designs and code
employing the tasking features. In some respects, this diminished portability is an inherent
characteristic of concurrency approaches (see Nissen and Wallis 1984, 37). A discussion of

19 http://www.adaic.com/standards/95lrm/html/RM-4-5-2.html
21 http://www.adaic.com/standards/95lrm/html/RM-13-11-2.html

220

http://www.adaic.com/standards/95lrm/html/RM-4-5-2.html
http://www.adaic.com/standards/95lrm/html/RM-13-11-2.html

Tasking

Ada tasking dependencies when employed in a distributed target environment is beyond the
scope of this book. For example, multiprocessor task scheduling, interprocessor rendezvous,
and the distributed sense of time through package Calendar are all subject to differences
between implementations. For more information, Nissen and Wallis (1984) and ARTEWG
(1986) touch on these issues, and Volz et al. (1985) is one of many research articles available.

If the Real-Time Systems Annex is supported, then many concurrency aspects are fully
defined and, therefore, a program can rely on these features while still being portable
to other implementations that conform to the Real-Time Systems Annex. The following
sections provide guidelines based on the absence of this annex.

8.4.1 Task Activation Order
guideline
• Do not depend on the order in which task objects are activated when declared in the
same declarative list.

rationale
The order in which task objects are activated is left undefined in the Ada Reference Manual
1995, §9.2 23 [Annotated24]. See also Guideline 6.1.5.

8.4.2 Delay Statements
guideline
• Do not depend on a particular delay being achievable (Nissen and Wallis 1984).
• Never use knowledge of the execution pattern of tasks to achieve timing requirements.

rationale
The rationale for this appears in Guideline 6.1.7. In addition, the treatment of delay
statements varies from implementation to implementation, thereby hindering portability.

Using knowledge of the execution pattern of tasks to achieve timing requirements is non-
portable. Ada does not specify the underlying scheduling algorithm, and there is no guar-
antee that system clock ticks will be consistently precise between different systems. Thus,
when you change system clocks, your delay behavior also changes.

8.4.3 Package Calendar, Type Duration, and System.Tick
guideline
• Do not assume a correlation between System.Tick and type Duration (see Guidelines
6.1.7 and 7.4.2).

23 http://www.adaic.com/standards/95lrm/html/RM-9-2.html

221

http://www.adaic.com/standards/95lrm/html/RM-9-2.html

Portability

rationale
Such a correlation is not required, although it may exist in some implementations.

8.4.4 Select Statement Evaluation Order
guideline
• Do not depend on the order in which guard conditions are evaluated or on the algorithm
for choosing among several open select alternatives.

rationale
The language does not define the order of these conditions, so assume that they are arbitrary.

8.4.5 Task Scheduling Algorithm
guideline
• Do not assume that tasks execute uninterrupted until they reach a synchronization point.
• Use pragma Priority to distinguish general levels of importance only (see Guideline 6.1.6).

rationale
The Ada tasking model requires that tasks be synchronized only through the explicit means
provided in the language (i.e., rendezvous, task dependence, pragma Atomic). The schedul-
ing algorithm is not defined by the language and may vary from time sliced to preemptive
priority. Some implementations provide several choices that a user may select for the ap-
plication.

notes
The number of priorities may vary between implementations. In addition, the manner in
which tasks of the same priority are handled may vary between implementations even if the
implementations use the same general scheduling algorithm.

exceptions
In real-time systems, it is often necessary to tightly control the tasking algorithm to obtain
the required performance. For example, avionics systems are frequently driven by cyclic
events with limited asynchronous interruptions. A nonpreemptive tasking model is tradi-
tionally used to obtain the greatest performance in these applications. Cyclic executives
can be programmed in Ada, as can a progression of scheduling schemes from cyclic through
multiple-frame-rate to full asynchrony (MacLaren 1980), although an external clock is usu-
ally required.

222

Exceptions

8.4.6 Abort
guideline
• Avoid using the abort statement.

rationale
The rationale for this appears in Guideline 6.3.3. In addition, treatment of the abort
statement varies from implementation to implementation, thereby hindering portability.

8.4.7 Unprotected Shared Variables and Pragmas Atomic and Volatile
guideline
• Do not use unprotected shared variables.
• Consider using protected types to provide data synchronization.
• Have tasks communicate through the rendezvous mechanism.
• Do not use unprotected shared variables as a task synchronization device.
• Consider using protected objects to encapsulate shared data.
• Use pragma Atomic or Volatile only when you are forced to by run-time system deficien-
cies.

example
See Guidelines 6.1.1 and 6.1.2.

rationale
The rationale for this appears in Guidelines 6.1.1 and 6.2.4. In addition, the treatment
of unprotected shared variables varies from implementation to implementation, thereby
hindering portability.

8.5 Exceptions
You should exercise care when using predefined exceptions because aspects of their treat-
ment may vary between implementations. Implementation-specific exceptions must, of
course, be avoided. See Guidelines 4.3 an 5.8 for further information on exceptions. See
Guideline 7.1.6 for further information on vendor-supplied features.

8.5.1 Predefined and User-Defined Exceptions
guideline
• Do not depend on the exact locations at which predefined exceptions are raised.
• Do not rely on the behavior of Ada.Exceptions beyond the minimum defined in the
language.

223

Portability

rationale
The Ada Reference Manual 1995, §Section 11 25 [Annotated26]) states that, among implemen-
tations, a predefined exception for the same cause may be raised from different locations.
You will not be able to discriminate between the exceptions. Further, each of the predefined
exceptions is associated with a variety of conditions. Any exception handler written for a
predefined exception must be prepared to deal with any of these conditions.

Guideline 5.6.9 discusses the use of blocks to define local exception handlers that can catch
exceptions close to their point of origin.

8.5.2 Implementation-Specific Exceptions
guideline
• Do not raise implementation-specific exceptions.
• Convert implementation-specific exceptions within interface packages to visible user-
defined exceptions.

rationale
No exception defined specifically by an implementation can be guaranteed to be portable
to other implementations whether or not they are from the same vendor. Not only may the
names be different, but the range of conditions triggering the exceptions may be different
also.

If you create interface packages for the implementation-specific portions of your program,
those packages can catch or recognize implementation-specific exceptions and convert them
into user-defined exceptions that have been declared in the specification. Do not allow
yourself to be forced to find and change the name of every handler you have written for
these exceptions when the program is ported.

8.6 Representation Clauses And
Implementation-Dependent Features

Ada provides many implementation-dependent features that permit greater control over
and interaction with the underlying hardware architecture than is normally provided by
a high-order language. These mechanisms are intended to assist in systems programming
and real-time programming to obtain greater efficiency (e.g., specific size and layout of
variables through representation clauses) and direct hardware interaction (e.g., interrupt
entries) without having to resort to assembly level programming. Given the objectives for
these features, it is not surprising that you must usually pay a significant price in portability
to use them. In general, where portability is the main objective, do not use these features.
When you must use these features, encapsulate them in packages that are well-commented as
interfacing to the particular target environment. This section identifies the various features
and their recommended use with respect to portability.

25 http://www.adaic.com/standards/95lrm/html/RM-11.html

224

http://www.adaic.com/standards/95lrm/html/RM-11.html

Representation Clauses And Implementation-Dependent Features

8.6.1 Representation Clauses
guideline
• Use algorithms that do not depend on the representation of the data and, therefore, do
not need representation clauses.

• Consider using representation clauses when accessing or defining interface data or when
a specific representation is needed to implement a design.

• Do not assume that sharing source files between programs guarantees the same represen-
tation of data types in those files.

rationale
In many cases, it is easy to use representation clauses to implement an algorithm, even
when it is not necessary. There is also a tendency to document the original programmer's
assumptions about the representation for future reference. But there is no guarantee that
another implementation will support the representation chosen. Unnecessary representation
clauses also confuse porting or maintenance efforts, which must assume that the programmer
depends on the documented representation.

Interfaces to external systems and devices are the most common situations where a repre-
sentation clause is needed. Uses of pragma Import and address clauses should be evaluated
during design and porting to determine whether a representation clause is needed.

Without representation clauses, the language does not require two compilations of an un-
changed file to result in the same data representation. Things that can change the repre-
sentation between compilations include:

• A change in a file earlier in the compilation order
• A change in the optimization strategy or level
• A change in versions of the compiler
• A change in actual compilers
• A change in the availability of system resources

Therefore, two independently linked programs or partitions should only share data that has
their representations explicitly controlled.

notes
During a porting effort, all representation clauses can be evaluated as either design artifacts
or specifications for accessing interface data that might change with a new implementation.

8.6.2 Package System
guideline
• Avoid using package System constants except in attempting to generalize other machine-
dependent constructs.

225

Portability

rationale
Because the values in this package are implementation-provided, unexpected effects can
result from their use.

notes
If you must guarantee that physical record layouts will remain the same between implemen-
tations, you can express record fields by their first and last bit positions as shown in the
Ada Reference Manual 1995, §13.5.1 27 [Annotated28]. Static expressions and named numbers
should be used to let the compiler compute the endpoints of each range in terms of earlier
fields. In this case, greater portability can be achieved by using System.Storage_Unit to
let the compiler compute the value of the named number. However, this method might not
work for all values of System.Storage_Unit.

exceptions
Do use package System constants to parameterize other implementation-dependent features
(see Pappas (1985, §13.7.1).

8.6.3 Machine Code Inserts
guideline
• Avoid machine code inserts.

rationale
The Ada Reference Manual (1995, Annex C) suggests that the package that implements
machine code inserts is optional. Additionally, it is not standardized so that machine code
inserts are most likely not portable. In fact, it is possible that two different vendors' syntax
will differ for an identical target, and differences in lower-level details, such as register
conventions, will hinder portability.

exceptions
If machine code inserts must be used to meet another project requirement, recognize and
document the portability decreasing effects.

In the declarative region of the body of the routine where machine code inserts are being
used, insert comments explaining what functions inserts provide and (especially) why the
inserts are necessary. Comment the necessity of using machine code inserts by delineating
what went wrong with attempts to use other higher level constructs.

27 http://www.adaic.com/standards/95lrm/html/RM-13-5-1.html

226

http://www.adaic.com/standards/95lrm/html/RM-13-5-1.html

Representation Clauses And Implementation-Dependent Features

8.6.4 Interfacing to Foreign Languages
guideline
• Use the package Interfaces and its language-defined child packages rather than
implementation-specific mechanisms.

• Consider using pragma Import rather than access-to-subprogram types for interfacing to
subprograms in other languages. (Preferably using the ”External_Name =>” argument.)

• Isolate all subprograms employing pragmas Import, Export, and Convention to
implementation-specific (interface) package bodies.

example
This example shows how to interface with the following cube root function written in C:
double cbrt (double x);

package Math_Utilities is

Argument_Error : exception;

function Cube_Root (X : Float) return Float;

...

end Math_Utilities;

--
with Interfaces.C;
package body Math_Utilities is

function Cube_Root (X : Float) return Float is

function C_Cbrt (X : Interfaces.C.Double) return Interfaces.C.Double;
pragma Import (Convention => C,

Entity => C_Cbrt,
External_Name => "cbrt");

begin
if X < 0.0 then

raise Argument_Error;
else

return Float (C_Cbrt (Interfaces.C.Double (X)));
end if;

end Cube_Root;

...

end Math_Utilities;

rationale
For static interfacing to subprograms in other languages, the pragma Import provides a
better solution than access to subprograms because no indirection is required. The pragma
Interface (Ada Reference Manual 1983) has been replaced by pragmas Import, Export,
and Convention. Annex B of the Rationale (1995) discusses how to use these pragmas in
conjunction with the access-to-subprogram types in interfacing to other languages.

227

Portability

Note especially the distinction between the ”External_Name =>” and ”Link_Name =>”
parameters to pragma Import which are frequently confused. External_Name specifies the
procedure name as it appears in the source code of the other language (such as C or Fortran).
Link_Name specifies the name used by the linker. Typically, only one of these parameters
is specified, and generally External_Name is the preferred choice for portability.

Access to subprogram types is useful for implementing callbacks in a separate subsystem,
such as the X Window system.

The problems with interfacing to foreign languages are complex. These problems include
pragma syntax differences, conventions for linking/binding Ada to other languages, and
mapping Ada variables to foreign language variables. By hiding these dependencies within
interface packages, the amount of code modification can be reduced.

exceptions
It is often necessary to interact with other languages, if only an assembly language, to reach
certain hardware features. In these cases, clearly comment the requirements and limitations
of the interface and pragma Import, Export, and Conventions usage.

8.6.5 Implementation-Specific Pragmas and Attributes
guideline
• Avoid pragmas and attributes added by the compiler implementor.

rationale
The Ada Reference Manual (1995) permits an implementor to add pragmas and attributes
to exploit a particular hardware architecture or software environment. These are obviously
even more implementation-specific and therefore less portable than an implementor's inter-
pretations of the predefined pragmas and attributes. However, the Ada Reference Manual
(1995) defines a set of annexes that have a uniform and consistent approach to certain
specialized needs, namely, real-time systems, distributed systems, information systems, nu-
merics, interfacing to foreign languages, and safety and security. You should always prefer
the facilities defined in the annexes to any vendor-defined pragmas and attributes.

8.6.6 Unchecked Deallocation
guideline
• Avoid dependence on Ada.Unchecked_Deallocation (see Guideline 5.9.2).

rationale
The unchecked storage deallocation mechanism is one method for overriding the default
time at which allocated storage is reclaimed. The earliest default time is when an object
is no longer accessible, for example, when control leaves the scope where an access type
was declared (the exact point after this time is implementation-dependent). Any unchecked

228

Representation Clauses And Implementation-Dependent Features

deallocation of storage performed prior to this may result in an erroneous Ada program if
an attempt is made to access the object.

This guideline is stronger than Guideline 5.9.2 because of the extreme dependence on the im-
plementation of Ada.Unchecked_Deallocation. Using it could cause considerable difficulty
with portability.

notes
Ada.Unchecked_Deallocation is a supported feature in all Ada implementations. The porta-
bility issue arises in that unchecked storage deallocations might cause varying results in
different implementations.

exceptions
Using unchecked deallocation of storage can be beneficial in local control of highly iterative
or recursive algorithms where available storage may be exceeded.

8.6.7 Unchecked Access
guideline
• Avoid dependence on the attribute Unchecked_Access (see Guideline 5.9.2).

rationale
Access values are subject to accessibility restrictions. Using the attribute Unchecked_Access
prevents these rules from being checked, and the programmer runs the risk of having dan-
gling references.

8.6.8 Unchecked Conversion
guideline
• Avoid dependence on Ada.Unchecked_Conversion (see Guideline 5.9.1).

rationale
The unchecked type conversion mechanism is, in effect, a means of bypassing the strong
typing facilities in Ada. An implementation is free to limit the types that may be matched
and the results that occur when object sizes differ.

exceptions
Unchecked type conversion is useful in implementation-dependent parts of Ada programs
where lack of portability is isolated and where low-level programming and foreign language
interfacing are the objectives.

229

Portability

If an enumeration representation clause is used, unchecked type conversion is the only
language-provided way to retrieve the internal integer code of an enumeration value.

8.6.9 Run-Time Dependencies
guideline
• Avoid the direct invocation of or implicit dependence upon an underlying host operating
system or Ada run-time support system, except where the interface is explicitly defined
in the language (e.g., Annex C or D of the Ada Reference Manual [1995]).

• Use standard bindings and the package Ada.Command_Line when you need to invoke
the underlying run-time support system.

• Use features defined in the Annexes rather than vendor-defined features.

rationale
Features of an implementation not specified in the Ada Reference Manual (1995) will usually
differ between implementations. Specific implementation-dependent features are not likely
to be provided in other implementations. In addition to the mandatory predefined language
environment, the annexes define various packages, attributes, and pragmas to standardize
implementation-dependent features for several specialized domains. You enhance portability
when you use the features declared in the packages in the Annexes because you can port
your program to other vendor environments that implement the same Annexes you have
used. Even if a majority of vendors eventually provide similar features, they are unlikely
to have identical formulations. Indeed, different vendors may use the same formulation for
(semantically) entirely different features.

When coding, try to avoid depending on the underlying operating system. Consider the
consequences of including system calls in a program on a host development system. If
these calls are not flagged for removal and replacement, the program could go through
development and testing only to be unusable when moved to a target environment that
lacks the facilities provided by those system calls on the host.

Guideline 7.1.5 discusses the use of the package Ada.Command_Line. If an Ada environ-
ment implements a standard binding to operating system services, such as POSIX/Ada, and
you write POSIX-compliant calls, your program should be portable across more systems.

exceptions
In real-time, embedded systems, making calls to low-level support system facilities may often
be unavoidable. Isolating the uses of these facilities may be too difficult. Comment them
as you would machine code inserts (see Guideline 7.6.3); they are, in a sense, instructions
for the virtual machine provided by the support system. When isolating the uses of these
features, provide an interface for the rest of your program to use, which can be ported
through replacement of the interface's implementation.

230

Input/Output

8.7 Input/Output
I/O facilities in Ada are not a part of the syntactic definition of the language. The con-
structs in the language have been used to define a set of packages for this purpose. These
packages are not expected to meet all the I/O needs of all applications, in particular, em-
bedded systems. They serve as a core subset that may be used on straightforward data and
that can be used as examples of building I/O facilities upon the low-level constructs pro-
vided by the language. Providing an I/O definition that could meet the requirements of all
applications and integrate with the many existing operating systems would result in unac-
ceptable implementation dependencies. The types of portability problems encountered with
I/O tend to be different for applications running with a host operating system versus em-
bedded targets where the Ada run-time is self-sufficient. Interacting with a host operating
system offers the added complexity of coexisting with the host file system structures (e.g.,
hierarchical directories), access methods (e.g., indexed sequential access method [ISAM]),
and naming conventions (e.g., logical names and aliases based on the current directory).
The section on Input/Output in ARTEWG (1986) provides some examples of this kind of
dependency. Embedded applications have different dependencies that often tie them to the
low-level details of their hardware devices.

The major defense against these inherent implementation dependencies in I/O is to try to
isolate their functionality in any given application. The majority of the following guidelines
are focused in this direction.

8.7.1 Name and Form Parameters
guideline
• Use constants and variables as symbolic actuals for the Name and Form parameters on the
predefined I/O packages. Declare and initialize them in an implementation dependency
package.

rationale
The format and allowable values of these parameters on the predefined I/O packages can
vary greatly between implementations. Isolation of these values facilitates portability. Not
specifying a Form string or using a null value does not guarantee portability because the
implementation is free to specify defaults.

notes
It may be desirable to further abstract the I/O facilities by defining additional Create and
Open procedures that hide the visibility of the Form parameter entirely (see Pappas 1985,
54-55).

8.7.2 File Closing
guideline
• Close all files explicitly.

231

Portability

rationale
The Ada Reference Manual 1995, §A.7 29 [Annotated30] does not define what happens to
external files after completion of the main subprogram (in particular, if corresponding files
have not been closed).

The disposition of a closed temporary file may vary, perhaps affecting performance and
space availability (ARTEWG 1986).

8.7.3 Input/Output on Access Types
guideline
• Avoid performing I/O on access types.

rationale
The Ada Reference Manual 1995, §A.7 31 [Annotated32] does not specify the effects of I/O on
access types. When such a value is written, it is placed out of reach of the implementation.
Thus, it is out of reach of the reliability-enhancing controls of strong type checking.

Consider the meaning of this operation. One possible implementation of the values of access
types is virtual addresses. If you write such a value, how can you expect another program
to read that value and make any sensible use of it? The value cannot be construed to refer
to any meaningful location within the reader's address space, nor can a reader infer any
information about the writer's address space from the value read. The latter is the same
problem that the writer would have trying to interpret or use the value if it is read back
in. To wit, a garbage collection and/or heap compaction scheme may have moved the item
formerly accessed by that value, leaving that value ”pointing” at space that is now being
put to indeterminable uses by the underlying implementation.

8.7.4 Package Ada.Streams.Stream_IO
guideline
• Consider using Sequential_IO or Direct_IO instead of Stream_IO unless you need the
low-level, heterogeneous I/O features provided by Stream_IO.

rationale
Sequential_IO and Direct_IO are still well suited for processing homogeneous files. Addi-
tionally, in cases where the intent is to process homogeneous files, the use of Sequential_IO
or Direct_IO has the advantage of enforcing this intent at compile time.

Stream_IO should be reserved for processing heterogeneous files. In this case, a file is
not a sequence of objects of all the same type but rather a sequence of objects of varying

29 http://www.adaic.com/standards/95lrm/html/RM-A-7.html
31 http://www.adaic.com/standards/95lrm/html/RM-A-7.html

232

http://www.adaic.com/standards/95lrm/html/RM-A-7.html
http://www.adaic.com/standards/95lrm/html/RM-A-7.html

Summary

types. To read a heterogeneous sequence of objects in the correct order requires some
application-specific knowledge.

8.7.5 Current Error Files
guideline
• Consider using Current_Error and Set_Error for run-time error messages.

example
with Ada.Text_IO;

...

begin
Ada.Text_IO.Open (File => Configuration_File,

Mode => Ada.Text_IO.In_File,
Name => Configuration_File_Name);

exception
when Ada.Text_IO.Name_Error =>

Ada.Text_IO.Put_Line (File => Ada.Text_IO.Standard_Error,
Item => "Can't open configuration file.");

...
end;

rationale
The package Text_IO includes the concept of a current error file. You should report errors
to the user through the associated subprograms Current_Error and Set_Error instead of
the standard output facilities. In interactive applications, using the Text_IO error facilities
increases the portability of your user interface.

notes
In a program with multiple tasks for I/O, you need to be careful of two or more tasks
trying to set Current_Input, Current_Output, or Current_Error. The potential problem
lies in unprotected updates to the ”shared” state associated with a package, in this case,
the package Text_IO. Guidelines 6.1.1 and 6.2.4 discuss the related issues of unprotected
shared variables.

8.8 Summary
8.8.1 fundamentals
• In programs or components intended to have a long life, avoid using the features of Ada
declared as ”obsolescent” by Annex J of the Ada Reference Manual (1995), unless the use
of the feature is needed for backward compatibility with Ada 83 (Ada Reference Manual
1983).

• Document the use of any obsolescent features.
• Avoid using the following features:

233

Portability

• The short renamings of the packages in the predefined environment (e.g., Text_IO as
opposed to Ada.Text_IO)

• The character replacements of ! for |, : for #, and % for quotation marks
• Reduced accuracy subtypes of floating-point types
• The 'Constrained attribute as applied to private types
• The predefined package ASCII
• The exception Numeric_Error
• Various representation specifications, including at clauses, mod clauses, interrupt en-
tries, and the Storage_Size attribute

• Make informed assumptions about the support provided for the following on potential
target platforms:
• Number of bits available for type Integer (range constraints)
• Number of decimal digits of precision available for floating-point types
• Number of bits available for fixed-point types (delta and range constraints)
• Number of characters per line of source text
• Number of bits for Root_Integer expressions
• Number of seconds for the range of Duration
• Number of milliseconds for Duration'Small
• Minimum and maximum scale for decimal types

• Avoid assumptions about the values and the number of values included in the type Char-
acter.

• Use highlighting comments for each package, subprogram, and task where any non-
portable features are present.

• For each nonportable feature employed, describe the expectations for that feature.
• Consider using only a parameterless procedure as the main subprogram.
• Consider using Ada.Command_Line for accessing values from the environment, but rec-
ognize that this package's behavior and even its specification are nonportable.

• Encapsulate and document all uses of package Ada.Command_Line.
• Create packages specifically designed to isolate hardware and implementation dependen-
cies and designed so that their specification will not change when porting.

• Clearly indicate the objectives if machine or solution efficiency is the reason for hardware
or implementation-dependent code.

• For the packages that hide implementation dependencies, maintain different package
bodies for different target environments.

• Isolate interrupt receiving tasks into implementation-dependent packages.
• Refer to Annex M of the Ada Reference Manual (1995) for a list of implementation-
dependent features.

• Avoid the use of vendor-supplied packages.
• Avoid the use of features added to the predefined packages that are not specified in the
Ada language definition or Specialized Needs Annexes.

• Use features defined in the Specialized Needs Annexes rather than vendor-defined fea-
tures.

• Document clearly the use of any features from the Specialized Needs Annexes (systems
programming, real-time systems, distributed systems, information systems, numerics, and
safety and security).

234

Summary

• Do not write code whose correct execution depends on the particular parameter passing
mechanism used by an implementation (Ada Reference Manual 1995, §6.2 33 [Annotated34];
Cohen 1986).

• If a subprogram has more than one formal parameter of a given subtype, at least one of
which is [in] out, make sure that the subprogram can properly handle the case when both
formal parameters denote the same actual object.

• Avoid depending on the order in which certain constructs in Ada are evaluated .

8.8.2 numeric types and expressions
• Avoid using the predefined numeric types in package Standard . Use range and digits
declarations and let the implementation pick the appropriate representation.

• For programs that require greater accuracy than that provided by the global assumptions,
define a package that declares a private type and operations as needed; see Pappas (1985)
for a full explanation and examples.

• Consider using predefined numeric types (Integer, Natural, Positive) for:
• Indexes into arrays where the index type is not significant, such as type String
• ”Pure” numbers, that is, numbers with no associated physical unit (e.g., exponents)
• Values whose purpose is to control a repeat or iteration count

• Use an implementation that supports the Numerics Annex (Ada Reference Manual 1995,
Annex G) when performance and accuracy are overriding concerns .

• Carefully analyze what accuracy and precision you really need.
• Do not press the accuracy limits of the machine(s).
• Comment the analysis and derivation of the numerical aspects of a program.
• Anticipate the range of values of subexpressions to avoid exceeding the underlying range
of their base type. Use derived types, subtypes, factoring, and range constraints on
numeric types.

• Consider using <= and >= to do relational tests on real valued arguments, avoiding the
<, >, =, and /= operations.

• Use values of type attributes in comparisons and checking for small values.
• In information systems, declare different numeric decimal types to correspond to different
scales (Brosgol, Eachus, and Emery 1994).

• Create objects of different decimal types to reflect different units of measure (Brosgol,
Eachus, and Emery 1994).

• Declare subtypes of the appropriately scaled decimal type to provide appropriate range
constraints for application-specific types.

• Encapsulate each measure category in a package (Brosgol, Eachus, and Emery 1994).
• Declare as few decimal types as possible for unitless data (Brosgol, Eachus, and Emery
1994).

• For decimal calculations, determine whether the result should be truncated toward 0 or
rounded.

• Avoid decimal types and arithmetic on compilers that do not support the Information
Systems Annex (Ada Reference Manual 1995, Annex F) in full.

33 http://www.adaic.com/standards/95lrm/html/RM-6-2.html

235

http://www.adaic.com/standards/95lrm/html/RM-6-2.html

Portability

8.8.3 storage control
• Do not use a representation clause to specify number of storage units.
• Do not compare access-to-subprogram values.
• Consider using explicitly defined storage pool mechanisms.

8.8.4 tasking
• Do not depend on the order in which task objects are activated when declared in the
same declarative list.

• Do not depend on a particular delay being achievable (Nissen and Wallis 1984).
• Never use knowledge of the execution pattern of tasks to achieve timing requirements.
• Do not assume a correlation between System.Tick and type Duration.
• Do not depend on the order in which guard conditions are evaluated or on the algorithm
for choosing among several open select alternatives.

• Do not assume that tasks execute uninterrupted until they reach a synchronization point.
• Use pragma Priority to distinguish general levels of importance only.
• Avoid using the abort statement.
• Do not use unprotected shared variables.
• Consider using protected types to provide data synchronization.
• Have tasks communicate through the rendezvous mechanism.
• Do not use unprotected shared variables as a task synchronization device.
• Consider using protected objects to encapsulate shared data.
• Use pragma Atomic or Volatile only when you are forced to by run-time system deficien-
cies.

exceptions
• Do not depend on the exact locations at which predefined exceptions are raised.
• Do not rely on the behavior of Ada.Exceptions beyond the minimum defined in the
language.

• Do not raise implementation-specific exceptions.
• Convert implementation-specific exceptions within interface packages to visible user-
defined exceptions.

8.8.5 representation clauses and implementation-dependent features
• Use algorithms that do not depend on the representation of the data and, therefore, do
not need representation clauses.

• Consider using representation clauses when accessing or defining interface data or when
a specific representation is needed to implement a design .

• Do not assume that sharing source files between programs guarantees the same represen-
tation of data types in those files.

• Avoid using package System constants except in attempting to generalize other machine-
dependent constructs.

• Avoid machine code inserts.
• Use the package Interfaces and its language-defined child packages rather than
implementation-specific mechanisms.

236

Summary

• Consider using pragma Import rather than access-to-subprogram types for interfacing to
subprograms in other languages.

• Isolate all subprograms employing pragmas Import, Export, and Convention to
implementation-specific (interface) package bodies.

• Avoid pragmas and attributes added by the compiler implementor.
• Avoid dependence on Ada.Unchecked_Deallocation.
• Avoid dependence on the attribute Unchecked_Access.
• Avoid dependence on Ada.Unchecked_Conversion.
• Avoid the direct invocation of or implicit dependence upon an underlying host operating
system or Ada run-time support system, except where the interface is explicitly defined
in the language (e.g., Annex C or D of the Ada Reference Manual [1995]).

• Use standard bindings and the package Ada.Command_Line when you need to invoke
the underlying

run-time support system.

• Use features defined in the Annexes rather than vendor-defined features.

8.8.6 input/output
• Use constants and variables as symbolic actuals for the Name and Form parameters on the
predefined I/O packages. Declare and initialize them in an implementation dependency
package.

• Close all files explicitly.
• Avoid performing I/O on access types.
• Consider using Sequential_IO or Direct_IO instead of Stream_IO unless you need the
low-level, heterogeneous I/O features provided by Stream_IO.

• Consider using Current_Error and Set_Error for run-time error messages.

237

9 Reusability

9.1 Introduction
Reusability is the extent to which code can be used in different applications with minimal
change. As code is reused in a new application, that new application partially inherits the
attributes of that code. If the code is maintainable, the application is more maintainable.
If it is portable, then the application is more portable. So this chapter's guidelines are most
useful when all of the other guidelines in this book are also applied. Several guidelines are
directed at the issue of maintainability. Maintainable code is easy to change to meet new
or changing requirements. Maintainability plays a special role in reuse. When attempts are
made to reuse code, it is often necessary to change it to suit the new application. If the
code cannot be changed easily, it is less likely to be reused.

There are many issues involved in software reuse: whether to reuse parts, how to store and
retrieve reusable parts in a library, how to certify parts, how to maximize the economic
value of reuse, how to provide incentives to engineers and entire companies to reuse parts
rather than reinvent them, and so on. This chapter ignores these managerial, economic,
and logistic issues to focus on the single technical issue of how to write software parts in
Ada to increase reuse potential. The other issues are just as important but are outside of
the scope of this book.

One of the design goals of Ada was to facilitate the creation and use of reusable parts to
improve productivity. To this end, Ada provides features to develop reusable parts and to
adapt them once they are available. Packages, visibility control, and separate compilation
support modularity and information hiding (see guidelines in Sections 4.1, 4.2, 5.3, and
5.7). This allows the separation of application-specific parts of the code, maximizes the
general purpose parts suitable for reuse, and allows the isolation of design decisions within
modules, facilitating change. The Ada type system supports localization of data definitions
so that consistent changes are easy to make. The Ada inheritance features support type
extension so that data definitions and interfaces may be customized for an application.
Generic units directly support the development of general purpose, adaptable code that can
be instantiated to perform specific functions. The Ada 95 improvements for object-oriented
techniques and abstraction support all of the above goals. Using these features carefully
and in conformance to the guidelines in this book, produces code that is more likely to be
reusable.

Reusable code is developed in many ways. Code may be scavenged from a previous project.
A reusable library of code may be developed from scratch for a particularly well-understood
domain, such as a math library. Reusable code may be developed as an intentional byprod-
uct of a specific application. Reusable code may be developed a certain way because a
design method requires it. These guidelines are intended to apply in all of these situations.

239

Reusability

The experienced programmer recognizes that software reuse is much more a requirements
and design issue than a coding issue. The guidelines in this section are intended to work
within an overall method for developing reusable code. This section will not deal with
artifacts of design, testing, etc. Some research into reuse issues related specifically to the
Ada language can be found in AIRMICS (1990), Edwards (1990), and Wheeler (1992).

• Regardless of development method, experience indicates that reusable code has certain
characteristics, and this chapter makes the following assumptions:

• Reusable parts must be understandable. A reusable part should be a model of clarity.
The requirements for commenting reusable parts are even more stringent than those for
parts specific to a particular application.

• Reusable parts must be of the highest possible quality. They must be correct, reliable,
and robust. An error or weakness in a reusable part may have far-reaching consequences,
and it is important that other programmers can have a high degree of confidence in any
parts offered for reuse.

• Reusable parts must be adaptable. To maximize its reuse potential, a reusable part must
be able to adapt to the needs of a wide variety of users.

• Reusable parts should be independent. It should be possible to reuse a single part without
also adopting many other parts that are apparently unrelated.

In addition to these criteria, a reusable part must be easier to reuse than to reinvent, must be
efficient, and must be portable. If it takes more effort to reuse a part than to create one from
scratch or if the reused part is simply not efficient enough, reuse does not occur as readily.
For guidelines on portability, see Chapter 7. This chapter should not be read in isolation. In
many respects, a well-written, reusable component is simply an extreme example of a well-
written component. All of the guidelines in the previous chapters and in Chapter 9 apply to
reusable components as well as components specific to a single application. As experience
increases with the 1995 revision to the Ada standard, new guidelines may emerge while
others may change. The guidelines listed here apply specifically to reusable components.

Guidelines in this chapter are frequently worded ”consider . . .” because hard and fast rules
cannot apply in all situations. The specific choice you can make in a given situation involves
design tradeoffs. The rationale for these guidelines is intended to give you insight into some
of these tradeoffs.

9.2 Understanding and Clarity
It is particularly important that parts intended for reuse should be easy to understand.
What the part does, how to use it, what anticipated changes might be made to it in the
future, and how it works are facts that must be immediately apparent from inspection of
the comments and the code itself. For maximum readability of reusable parts, follow the
guidelines in Chapter 3, some of which are repeated more strongly below.

9.2.1 Application-Independent Naming
guideline
• Select the least restrictive names possible for reusable parts and their identifiers .

240

Understanding and Clarity

• Select the generic name to avoid conflicting with the naming conventions of instantiations
of the generic.

• Use names that indicate the behavioral characteristics of the reusable part, as well as its
abstraction.

example
General-purpose stack abstraction:
--
generic

type Item is private;
package Bounded_Stack is

procedure Push (New_Item : in Item);
procedure Pop (Newest_Item : out Item);
...

end Bounded_Stack;
--

Renamed appropriately for use in current application:
with Bounded_Stack;

...

type Tray is ...
package Tray_Stack is

new Bounded_Stack (Item => Tray);

rationale
Choosing a general or application-independent name for a reusable part encourages its wide
reuse. When the part is used in a specific context, it can be instantiated (if generic) or
renamed with a more specific name.

When there is an obvious choice for the simplest, clearest name for a reusable part, it is
a good idea to leave that name for use by the reuser of the part, choosing a longer, more
descriptive name for the reusable part. Thus, Bounded_Stack is a better name than Stack
for a generic stack package because it leaves the simpler name Stack available to be used
by an instantiation.

Include indications of the behavioral characteristics (but not indications of the implementa-
tion) in the name of a reusable part so that multiple parts with the same abstraction (e.g.,
multiple stack packages) but with different restrictions (bounded, unbounded, etc.) can be
stored in the same Ada library and used as part of the same Ada program.

9.2.2 Abbreviations
guideline
• Do not use abbreviations in identifier or unit names.

241

Reusability

example
--
with Ada.Calendar;
package Greenwich_Mean_Time is

function Clock return Ada.Calendar.Time;
...

end Greenwich_Mean_Time;
--

The following abbreviation may not be clear when used in an application:
with Ada.Calendar;
with Greenwich_Mean_Time;
...

function Get_GMT return Ada.Calendar.Time renames
Greenwich_Mean_Time.Clock;

rationale
This is a stronger guideline than Guideline 3.1.4. However well commented, an abbreviation
may cause confusion in some future reuse context. Even universally accepted abbreviations,
such as GMT for Greenwich Mean Time, can cause problems and should be used only with
great caution.

The difference between this guideline and Guideline 3.1.4 involves issues of domain. When
the domain is well-defined, abbreviations and acronyms that are accepted in that domain
will clarify the meaning of the application. When that same code is removed from its
domain-specific context, those abbreviations may become meaningless.

In the example above, the package, Greenwich_Mean_Time, could be used in any appli-
cation without loss of meaning. But the function Get_GMT could easily be confused with
some other acronym in a different domain.

notes
See Guideline 5.7.2 concerning the proper use of the renames clause. If a particular appli-
cation makes extensive use of the Greenwich_Mean_Time domain, it may be appropriate
to rename the package GMT within that application:

with Greenwich_Mean_Time; ...
package GMT renames Greenwich_Mean_Time;

9.2.3 Generic Formal Parameters
guideline
• Document the expected behavior of generic formal parameters just as you document any
package specification.

242

Robustness

example
The following example shows how a very general algorithm can be developed but must be
clearly documented to be used:
--
generic

-- Index provides access to values in a structure. For example,
-- an array, A.
type Index is (<>);
type Element is private;
type Element_Array is array (Index range <>) of Element;
-- The function, Should_Precede, does NOT compare the indexes
-- themselves; it compares the elements of the structure.
-- The function Should_Precede is provided rather than a "Less_Than" function
-- because the sort criterion need not be smallest first.
with function Should_Precede (Left : in Element;

Right : in Element)
return Boolean;

-- This procedure swaps values of the structure (the mode won't
-- allow the indexes themselves to be swapped!)
with procedure Swap (Index1 : in Index;

Index2 : in Index;
A : in out Element_Array);

-- After the call to Quick_Sort, the indexed structure will be
-- sorted:
-- For all i,j in First..Last : i<j => A(i) < A(j).

procedure Quick_Sort (First : in Index := Index'First;
Last : in Index := Index'Last);

--

rationale
The generic capability is one of Ada's strongest features because of its formalization. How-
ever, not all of the assumptions made about generic formal parameters can be expressed
directly in Ada. It is important that any user of a generic know exactly what that generic
needs in order to behave correctly.

In a sense, a generic specification is a contract where the instantiator must supply the formal
parameters and, in return, receives a working instance of the specification. Both parties are
best served when the contract is complete and clear about all assumptions.

9.3 Robustness
The following guidelines improve the robustness of Ada code. It is easy to write code that
depends on an assumption that you do not realize that you are making. When such a
part is reused in a different environment, it can break unexpectedly. The guidelines in this
section show some ways in which Ada code can be made to automatically conform to its
environment and some ways in which it can be made to check for violations of assumptions.
Finally, some guidelines are given to warn you about errors that Ada does not catch as soon
as you might like.

243

Reusability

9.3.1 Named Numbers
guideline
• Use named numbers and static expressions to allow multiple dependencies to be linked
to a small number of symbols.

example
--
procedure Disk_Driver is

-- In this procedure, a number of important disk parameters are
-- linked.
Number_Of_Sectors : constant := 4;
Number_Of_Tracks : constant := 200;
Number_Of_Surfaces : constant := 18;
Sector_Capacity : constant := 4_096;
Track_Capacity : constant := Number_Of_Sectors * Sector_Capacity;
Surface_Capacity : constant := Number_Of_Tracks * Track_Capacity;
Disk_Capacity : constant := Number_Of_Surfaces * Surface_Capacity;
type Sector_Range is range 1 .. Number_Of_Sectors;
type Track_Range is range 1 .. Number_Of_Tracks;
type Surface_Range is range 1 .. Number_Of_Surfaces;
type Track_Map is array (Sector_Range) of ...;
type Surface_Map is array (Track_Range) of Track_Map;
type Disk_Map is array (Surface_Range) of Surface_Map;

begin -- Disk_Driver
...

end Disk_Driver;
--

rationale
To reuse software that uses named numbers and static expressions appropriately, just one or
a small number of constants need to be reset, and all declarations and associated code are
changed automatically. Apart from easing reuse, this reduces the number of opportunities
for error and documents the meanings of the types and constants without using error-prone
comments.

9.3.2 Unconstrained Arrays
guideline
• Use unconstrained array types for array formal parameters and array return values.
• Make the size of local variables depend on actual parameter size, where appropriate.

example
...
type Vector is array (Vector_Index range <>) of Element;
type Matrix is array

(Vector_Index range <>, Vector_Index range <>) of Element;
...

procedure Matrix_Operation (Data : in Matrix) is

Workspace : Matrix (Data'Range(1), Data'Range(2));
Temp_Vector : Vector (Data'First(1) .. 2 * Data'Last(1));

244

Robustness

...

rationale
Unconstrained arrays can be declared with their sizes dependent on formal parameter sizes.
When used as local variables, their sizes change automatically with the supplied actual
parameters. This facility can be used to assist in the adaptation of a part because necessary
size changes in local variables are taken care of automatically.

9.3.3 Minimizing and Documenting Assumptions
guideline
• Minimize the number of assumptions made by a unit.
• For assumptions that cannot be avoided, use subtypes or constraints to automatically
enforce conformance.

• For assumptions that cannot be automatically enforced by subtypes, add explicit checks
to the code.

• Document all assumptions.
• If the code depends upon the implementation of a specific Special Needs Annex for proper
operation, document this assumption in the code.

example
The following poorly written function documents but does not check its assumption:

-- Assumption: BCD value is less than 4 digits.
function Binary_To_BCD (Binary_Value : in Natural)

return BCD;

The next example enforces conformance with its assumption, making the checking automatic
and the comment unnecessary:

subtype Binary_Values is Natural range 0 .. 9_999;
function Binary_To_BCD (Binary_Value : in Binary_Values)

return BCD;

The next example explicitly checks and documents its assumption:

-- Out_Of_Range raised when BCD value exceeds 4 digits.
function Binary_To_BCD (Binary_Value : in Natural)

return BCD is
Maximum_Representable : constant Natural := 9_999;

begin -- Binary_To_BCD
if Binary_Value > Maximum_Representable then

raise Out_Of_Range;
end if;
...

end Binary_To_BCD;

245

Reusability

rationale
Any part that is intended to be used again in another program, especially if the other
program is likely to be written by other people, should be robust. It should defend itself
against misuse by defining its interface to enforce as many assumptions as possible and by
adding explicit defensive checks on anything that cannot be enforced by the interface. By
documenting dependencies on a Special Needs Annex, you warn the user that he should only
reuse the component in a compilation environment that provides the necessary support.

notes
You can restrict the ranges of values of the inputs by careful selection or construction of
the subtypes of the formal parameters. When you do so, the compiler-generated checking
code may be more efficient than any checks you might write. Indeed, such checking is part
of the intent of the strong typing in the language. This presents a challenge, however, for
generic units where the user of your code selects the types of the parameters. Your code
must be constructed to deal with any value of any subtype the user may choose to select
for an instantiation.

9.3.4 Subtypes in Generic Specifications
guideline
• Use first subtypes when declaring generic formal objects of mode in out.
• Beware of using subtypes as subtype marks when declaring parameters or return values
of generic formal subprograms.

• Use attributes rather than literal values.

example
In the following example, it appears that any value supplied for the generic formal object
Object would be constrained to the range 1..10. It also appears that parameters passed at
run-time to the Put routine in any instantiation and values returned by the Get routine
would be similarly constrained:

subtype Range_1_10 is Integer range 1 .. 10;

generic

Object : in out Range_1_10;
with procedure Put (Parameter : in Range_1_10);
with function Get return Range_1_10;

package Input_Output is
...

end Input_Output;

However, this is not the case. Given the following legal instantiation:
subtype Range_15_30 is Integer range 15 .. 30;
Constrained_Object : Range_15_30 := 15;
procedure Constrained_Put (Parameter : in Range_15_30);
function Constrained_Get return Range_15_30;
package Constrained_Input_Output is

246

Robustness

new Input_Output (Object => Constrained_Object,
Put => Constrained_Put,
Get => Constrained_Get);

...

Object, Parameter, and the return value of Get are constrained to the range 15..30. Thus,
for example, if the body of the generic package contains an assignment statement:
Object := 1;

Constraint_Error is raised when this instantiation is executed.

rationale
The language specifies that when constraint checking is performed for generic formal objects
and parameters and return values of generic formal subprograms, the constraints of the
actual subtype (not the formal subtype) are enforced (Ada Reference Manual 1995, §§12.4 1
[Annotated2] and §12.6 3 [Annotated4]). Thus, the subtype specified in a formal in out object
parameter and the subtypes specified in the profile of a formal subprogram need not match
those of the actual object or subprogram.

Thus, even with a generic unit that has been instantiated and tested many times and with
an instantiation that reported no errors at instantiation time, there can be a run-time
error. Because the subtype constraints of the generic formal are ignored, the Ada Reference
Manual (1995, §§12.4 5 [Annotated6] and §12.6 7 [Annotated8]) suggests using the name of a
base type in such places to avoid confusion. Even so, you must be careful not to assume the
freedom to use any value of the base type because the instantiation imposes the subtype
constraints of the generic actual parameter. To be safe, always refer to specific values of
the type via symbolic expressions containing attributes like 'First, 'Last, 'Pred, and 'Succ
rather than via literal values.

For generics, attributes provide the means to maintain generality. It is possible to use literal
values, but literals run the risk of violating some constraint. For example, assuming that
an array's index starts at 1 may cause a problem when the generic is instantiated for a
zero-based array type.

notes
Adding a generic formal parameter that defines the subtype of the generic formal object
does not address the ramifications of the constraint checking rule discussed in the above
rationale. You can instantiate the generic formal type with any allowable subtype, and you
are not guaranteed that this subtype is the first subtype:

1 http://www.adaic.com/standards/95lrm/html/RM-12-4.html
3 http://www.adaic.com/standards/95lrm/html/RM-12-6.html
5 http://www.adaic.com/standards/95lrm/html/RM-12-4.html
7 http://www.adaic.com/standards/95lrm/html/RM-12-6.html

247

http://www.adaic.com/standards/95lrm/html/RM-12-4.html
http://www.adaic.com/standards/95lrm/html/RM-12-6.html
http://www.adaic.com/standards/95lrm/html/RM-12-4.html
http://www.adaic.com/standards/95lrm/html/RM-12-6.html

Reusability

generic
type Object_Range is range <>;
Objects : in out Object_Range;
...

package X is
...

end X;

You can instantiate the subtype Object_Range with any Integer subtype, for example,
Positive. However, the actual variable Object can be of Positive'Base, i.e., Integer and its
value are not guaranteed to be greater than 0.

9.3.5 Overloading in Generic Units
guideline
• Be careful about overloading the names of subprograms exported by the same generic
package.

example
--
generic

type Item is limited private;
package Input_Output is

procedure Put (Value : in Integer);
procedure Put (Value : in Item);

end Input_Output;
--

rationale
If the generic package shown in the example above is instantiated with Integer (or any
subtype of Integer) as the actual type corresponding to generic formal Item, then the two
Put procedures have identical interfaces, and all calls to Put are ambiguous. Therefore, this
package cannot be used with type Integer. In such a case, it is better to give unambiguous
names to all subprograms. See the Ada Reference Manual 1995, §12.3 9 [Annotated10] for
more information.

9.3.6 Hidden Tasks
guideline
• Within a specification , document any tasks that would be activated by with'ing the
specification and by using any part of the specification.

• Document which generic formal parameters are accessed from a task hidden inside the
generic unit.

• Document any multithreaded components.

9 http://www.adaic.com/standards/95lrm/html/RM-12-3.html

248

http://www.adaic.com/standards/95lrm/html/RM-12-3.html

Robustness

rationale
The effects of tasking become a major factor when reusable code enters the domain of
real-time systems. Even though tasks may be used for other purposes, their effect on
scheduling algorithms is still a concern and must be clearly documented. With the task
clearly documented, the real-time programmer can then analyze performance, priorities,
and so forth to meet timing requirements, or, if necessary, he can modify or even redesign
the component.

Concurrent access to datastructures must be carefully planned to avoid errors, especially
for data structures that are not atomic (see Chapter 6 for details). If a generic unit accesses
one of its generic formal parameters (reads or writes the value of a generic formal object or
calls a generic formal subprogram that reads or writes data) from within a task contained
in the generic unit, then there is the possibility of concurrent access for which the user may
not have planned. In such a case, the user should be warned by a comment in the generic
specification.

9.3.7 Exceptions
guideline
• Propagate exceptions out of reusable parts. Handle exceptions within reusable parts only
when you are certain that the handling is appropriate in all circumstances.

• Propagate exceptions raised by generic formal subprograms after performing any cleanup
necessary to the correct operation of future invocations of the generic instantiation.

• Leave state variables in a valid state when raising an exception.
• Leave parameters unmodified when raising an exception.

example
--
generic

type Number is limited private;
with procedure Get (Value : out Number);

procedure Process_Numbers;

--
procedure Process_Numbers is

Local : Number;
procedure Perform_Cleanup_Necessary_For_Process_Numbers is separate;
...

begin -- Process_Numbers
...
Catch_Exceptions_Generated_By_Get:

begin
Get (Local);

exception
when others =>

Perform_Cleanup_Necessary_For_Process_Numbers;
raise;

end Catch_Exceptions_Generated_By_Get;
...

end Process_Numbers;
--

249

Reusability

rationale
On most occasions, an exception is raised because an undesired event (such as floating-point
overflow) has occurred. Such events often need to be dealt with entirely differently with
different uses of a particular software part. It is very difficult to anticipate all the ways that
users of the part may wish to have the exceptions handled. Passing the exception out of
the part is the safest treatment.

In particular, when an exception is raised by a generic formal subprogram, the generic unit
is in no position to understand why or to know what corrective action to take. Therefore,
such exceptions should always be propagated back to the caller of the generic instantiation.
However, the generic unit must first clean up after itself, restoring its internal data structures
to a correct state so that future calls may be made to it after the caller has dealt with the
current exception. For this reason, all calls to generic formal subprograms should be within
the scope of a when others exception handler if the internal state is modified, as shown in
the example above.

When a reusable part is invoked, the user of the part should be able to know exactly what
operation (at the appropriate level of abstraction) has been performed. For this to be
possible, a reusable part must always do all or none of its specified function; it must never
do half. Therefore, any reusable part that terminates early by raising or propagating an
exception should return to the caller with no effect on the internal or external state. The
easiest way to do this is to test for all possible exceptional conditions before making any
state changes (modifying internal state variables, making calls to other reusable parts to
modify their states, updating files, etc.). When this is not possible, it is best to restore
all internal and external states to the values that were current when the part was invoked
before raising or propagating the exception. Even when this is not possible, it is important
to document this potentially hazardous situation in the comment header of the specification
of the part.

A similar problem arises with parameters of mode out or in out when exceptions are raised.
The Ada language distinguishes between ”by-copy” and ”by-reference” parameter passing.
In some cases, ”by-copy” is required; in other cases, ”by-reference” is required; and in the
remaining cases, either mechanism is allowed. The potential problem arises in those cases
where the language does not specify the parameter passing mechanism to use. When an
exception is raised, the copy-back does not occur, but for an Ada compiler, which passes
parameters by reference (in those cases where a choice is allowed), the actual parameter has
already been updated. When parameters are passed by copy, the update does not occur.
To reduce ambiguity, increase portability, and avoid situations where some but not all of
the actual parameters are updated when an exception is raised, it is best to treat values of
out and in out parameters like state variables, updating them only after it is certain that
no exception will be raised. See also Guideline 7.1.8.

notes
A reusable part could range from a low-level building block (e.g., data structure, sorting
algorithm, math function) to a large reusable subsystem. The lower level the building
block, the less likely that the reusable part will know how to handle exceptions or produce
meaningful results. Thus, the low-level parts should propagate exceptions. A large reusable

250

Adaptability

subsystem, however, should be able to handle any anticipated exceptions independently of
the variations across which it is reused.

9.4 Adaptability
Reusable parts often need to be changed before they can be used in a specific application.
They should be structured so that change is easy and as localized as possible. One way of
achieving adaptability is to create general parts with complete functionality, only a subset
of which might be needed in a given application. Another way to achieve adaptability is to
use Ada's generic construct to produce parts that can be appropriately instantiated with
different parameters. Both of these approaches avoid the error-prone process of adapting a
part by changing its code but have limitations and can carry some overhead. Anticipated
changes, that is, changes that can be reasonably foreseen by the developer of the part, should
be provided for as far as possible. Unanticipated changes can only be accommodated by
carefully structuring a part to be adaptable. Many of the considerations pertaining to
maintainability apply. If the code is of high quality, clear, and conforms to well-established
design principles such as information hiding, it is easier to adapt in unforeseen ways.

9.4.1 Complete Functionality
guideline
• Provide core functionality in a reusable part or set of parts so that the functionality in
this abstraction can be meaningfully extended by its reusers.

• More specifically, provide initialization and finalization procedures for every data struc-
ture that may contain dynamic data.

• For data structures needing initialization and finalization, consider deriv-
ing them, when possible, from the types Ada.Finalization.Controlled or
Ada.Finalization.Limited_Controlled.

example
Incoming : Queue;
...
Set_Initial (Incoming); -- initialization operation
...
if Is_Full (Incoming) then -- query operation

...
end if;
...
Clean_Up (Incoming); -- finalization operation

rationale
This functionality is particularly important in designing/programming an abstraction. You
have to balance the completeness of the abstraction against its extensibility. Completeness
ensures that you have configured the abstraction correctly, without built-in assumptions
about its execution environment. It also ensures the proper separation of functions so that
they are useful to the current application and, in other combinations, to other applications.
Extensibility ensures that reusers can add functionality by extension, using tagged type

251

Reusability

hierarchies (see Guideline 8.4.8 and Chapter 9) or child library packages (see Guidelines
4.1.6, 8.4.1, and 9.4.1).

In designing for reuse, you need to think in terms of clean abstractions. If you provide
too little functionality and rely on your reusers to extend the abstraction, they risk hav-
ing an abstraction that lacks cohesion. This hodgepodge abstraction has inherited many
operations, not all of which are necessary or work together.

When a reusable part can be implemented reasonably using dynamic data, then any ap-
plication that must control memory can use the initialization and finalization routines to
guard against memory leakage. Then, if data structures become dynamic, the applications
that are sensitive to these concerns can be easily adapted.

The predefined types Ada.Finalization.Controlled or Ada.Finalization.Limited_Controlled
provide automatic, user-definable initialization, adjustment, and finalization procedures.
When you declare controlled types and objects, you are guaranteed that the compiler will
insert the necessary calls to initialization, adjustment, and finalization, making your code
less error-prone and more maintainable. When overriding the Initialize and Finalize routines
on the controlled types, make sure to call the parent Initialize or Finalize.

notes
The example illustrates end condition functions. An abstraction should be automatically
initialized before its user gets a chance to damage it. When that is not possible, it should
be supplied with initialization operations. In any case, it needs finalization operations. One
way to supply the initialization and finalization operations is to derive the abstraction from
the predefined types Ada.Finalization.Controlled or Ada.Finalization.Limited_Controlled.
Wherever possible, query operations should be provided to determine when limits are about
to be exceeded, so that the user can avoid causing exceptions to be raised.

It is also useful to provide reset operations for many objects. To see that a reset and an
initiation can be different, consider the analogous situation of a ”warm boot” and a ”cold
boot” on a personal computer.

Even if all of these operations are not appropriate for the abstraction, the exercise of con-
sidering them aids in formulating a complete set of operations, others of which may be used
by another application.

Some implementations of the language link all subprograms of a package into the exe-
cutable file, ignoring whether they are used or not, making unused operations a liability
(see Guideline 8.4.5). In such cases, where the overhead is significant, create a copy of the
fully functional part and comment out the unused operations with an indication that they
are redundant in this application.

9.4.2 Generic Units
guideline
• Use generic units to avoid code duplication.
• Parameterize generic units for maximum adaptability.
• Reuse common instantiations of generic units, as well as the generic units themselves.

252

Adaptability

rationale
Ada does not allow data types to be passed as actual parameters to subprograms during
execution. Such parameters must be specified as generic formal parameters to a generic
unit when it is instantiated. Therefore, if you want to write a subprogram for which there
is variation from call to call in the data type of objects on which it operates, then you must
write the subprogram as a generic unit and instantiate it once for each combination of data
type parameters. The instantiations of the unit can then be called as regular subprograms.

You can pass subprograms as actual parameters either by declaring access-to-subprogram
values or generic formal subprogram parameters. See Guideline 5.3.4 for a discussion of the
tradeoffs.

If you find yourself writing two very similar routines differing only in the data type they
operate on or the subprograms they call, then it is probably better to write the routine
once as a generic unit and instantiate it twice to get the two versions you need. When the
need arises later to modify the two routines, the change only needs to be made in one place.
This greatly facilitates maintenance.

Once you have made such a choice, consider other aspects of the routine that these two
instances may have in common but that are not essential to the nature of the routine.
Factor these out as generic formal parameters. When the need arises later for a third similar
routine, it can be automatically produced by a third instantiation if you have foreseen all
the differences between it and the other two. A parameterized generic unit can be very
reusable.

It may seem that the effort involved in writing generic rather than nongeneric units is
substantial. However, making units generic is not much more difficult or time-consuming
than making them nongeneric once you become familiar with the generic facilities. It is, for
the most part, a matter of practice. Also, any effort put into the development of the unit
will be recouped when the unit is reused, as it surely will be if it is placed in a reuse library
with sufficient visibility. Do not limit your thinking about potential reuse to the application
you are working on or to other applications with which you are very familiar. Applications
with which you are not familiar or future applications might be able to reuse your software.

After writing a generic unit and placing it in your reuse library, the first thing you are likely
to do is to instantiate it once for your particular needs. At this time, it is a good idea
to consider whether there are instantiations that are very likely to be widely used. If so,
place each such instantiation in your reuse library so that they can be found and shared by
others.

See also Guideline 9.3.5.

9.4.3 Formal Private and Limited Private Types
guideline
• Consider using a limited private type for a generic formal type when you do not need
assignment on objects of the type inside the generic body.

• Consider using a nonlimited private type for a generic formal type when you need normal
assignment on objects of the type inside the body of the generic.

253

Reusability

• Consider using a formal tagged type derived from Ada.Finalization.Controlled when you
need to enforce special assignment semantics on objects of the type in the body of the
generic.

• Export the least restrictive type that maintains the integrity of the data and abstraction
while allowing alternate implementations.

• Consider using a limited private abstract type for generic formal types of a generic that
extends a formal private tagged type.

example
The first example shows a case of a template providing only a data structure, a case in
which assignment is clearly not needed in the body of the generic:
--
generic

type Element_Type is limited private;
package Generic_Doubly_Linked_Lists is

type Cell_Type;
type List_Type is access all Element_Type;
type Cell_Type is

record
Data : Element_Type;
Next : List_Type;
Previous : List_Type;

end record;
end Generic_Doubly_Linked_Lists;

The second example shows a template that composes new operations out of (nonassignment)
operations passed as generic formal parameters:
generic

type Element_Type is limited private;
with procedure Process_Element (X : in out Element_Type);
type List_Type is array (Positive range <>) of Element_Type;

procedure Process_List (L : in out List_Type);
procedure Process_List (L : in out List_Type) is
begin -- Process_List

for I in L'Range loop
Process_Element (L(I));

end loop;
end Process_List;
--
generic

type Domain_Type is limited private;
type Intermediate_Type is limited private;
type Range_Type is limited private;
with function Left (X : Intermediate_Type) return Range_Type;
with function Right (X : Domain_Type) return Intermediate_Type;

function Generic_Composition (X : Domain_Type) return Range_Type;
-- the function Left o Right
function Generic_Composition (X : Domain_Type) return Range_Type is
begin -- generic_Composition

return Left (Right (X));
end Generic_Composition;

The third example shows how to use Ada's controlled types to provide special assignment
semantics:

254

Adaptability

with Ada.Finalization;
generic

type Any_Element is new Ada.Finalization.Controlled with private;
Maximum_Stack_Size : in Natural := 100;

package Bounded_Stack is
type Stack is private;
procedure Push (On_Top : in out Stack;

New_Element : in Any_Element);
procedure Pop (From_Top : in out Stack;

Top_Element : out Any_Element);
Overflow : exception;
Underflow : exception;
...

private
type Stack_Information;
type Stack is access Stack_Information;

end Bounded_Stack;

rationale
For a generic component to be usable in as many contexts as possible, it should minimize the
assumptions that it makes about its environment and should make explicit any assumptions
that are necessary. In Ada, the assumptions made by generic units can be stated explicitly
by the types of the generic formal parameters. A limited private generic formal type prevents
the generic unit from making any assumptions about the structure of objects of the type
or about operations defined for such objects. A private (nonlimited) generic formal type
allows the assumption that assignment and equality comparison operations are defined for
the type. Thus, a limited private data type cannot be specified as the actual parameter for
a private generic formal type.

In general, you should choose the private or limited private generic formal type based on the
need for assignment inside a generic. Limited private types should be used for abstractions
that do not need assignment, as in the first two examples above. In the third example,
where assignment is needed, a type derived from a controlled type is specified to ensure
that the correct assignment semantics will be available. If you need equality in the body
of the generic, you may need to redefine equality as well to get the correct semantics; you
would then need to include a formal generic subprogram parameter for the = function.

The situation is reversed for types exported by a reusable part. For exported types, the
restrictions specified by limited and limited private are restrictions on the user of the part,
not on the part itself. To provide maximum capability to the user of a reusable part, export
types with as few restrictions as possible. Apply restrictions as necessary to protect the
integrity of the exported data structures and the abstraction for the various implementations
envisioned for that generic.

Because they are so restrictive, limited private types are not always the best choice for
types exported by a reusable part. In a case where it makes sense to allow the user to make
copies of and compare data objects, and when the underlying data type does not involve
access types (so that the entire data structure gets copied or compared), then it is better
to export a (nonlimited) private type. In a case where it makes sense to allow the user
to make copies of and compare data objects and when the underlying data type involves
access types (so that the entire data structure gets copied or compared), then it is better to

255

Reusability

export a controlled type and an (overridden) equality operation. In cases where it does not
detract from the abstraction to reveal even more about the type, then a nonprivate type
(e.g., a numeric, enumerated, record, or array type) should be used.

One use of generic units is to create a mixin generic (see Guideline 8.3.8) to extend a tagged
type. In this situation, you want to use the most restrictive type as the generic formal type,
that is, a formal type that is both limited and abstract. When you instantiate the generic,
if the actual type is nonlimited, the type extension will also be nonlimited. In the generic
package, you must declare the type extension as abstract. The instantiator of the generic
can then extend the type again to achieve the desired mixin configuration.

notes
The predefined packages, Sequential_IO and Direct_IO, take private types. This will
complicate I/O requirements for limited private types and should be considered during
design.

There are also some cases where you must use a limited private formal type. These cases
arise when the formal type has an access discriminant, or the formal is used as the parent
type in defining a type extension that itself includes a component of a limited type (e.g.,
task type), or the formal defines a new discriminant part with an access discriminant.

9.4.4 Using Generic Units to Encapsulate Algorithms
guideline
• Use generic units to encapsulate algorithms independently of data type.

example
This is the specification of a generic sort procedure:
--
generic

type Element is private;
type Data is array (Positive range <>) of Element;
with function Should_Precede (Left : in Element;

Right : in Element)
return Boolean is <>;

with procedure Swap (Left : in out Element;
Right : in out Element) is <>;

procedure Generic_Sort (Data_To_Sort : in out Data);
--

The generic body looks just like a regular procedure body and can make full use of the
generic formal parameters in implementing the sort algorithm:
--
procedure Generic_Sort (Data_To_Sort : in out Data) is
begin

...
for I in Data_To_Sort'Range loop

...
...
if Should_Precede (Data_To_Sort(J), Data_To_Sort(I)) then

256

Adaptability

Swap(Data_To_Sort(I), Data_To_Sort(J));
end if;
...

...
end loop;
...

end Generic_Sort;
--

The generic procedure can be instantiated as:
type Integer_Array is array (Positive range <>) of Integer;
function Should_Precede (Left : in Integer;

Right : in Integer)
return Boolean;

procedure Swap (Left : in out Integer;
Right : in out Integer);

procedure Sort is
new Generic_Sort (Element => Integer,

Data => Integer_Array);

or:
subtype String_80 is String (1 .. 80);
type String_Array is array (Positive range <>) of String_80;
function Should_Precede (Left : in String_80;

Right : in String_80)
return Boolean;

procedure Swap (Left : in out String_80;
Right : in out String_80);

procedure Sort is
new Generic_Sort (Element => String_80,

Data => String_Array);

and called as:
Integer_Array_1 : Integer_Array (1 .. 100);
...
Sort (Integer_Array_1);

or:
String_Array_1 : String_Array (1 .. 100);
...
Sort (String_Array_1);

rationale
A sort algorithm can be described independently of the data type being sorted. This generic
procedure takes the Element data type as a generic limited private type parameter so that
it assumes as little as possible about the data type of the objects actually being operated
on. It also takes Data as a generic formal parameter so that instantiations can have entire
arrays passed to them for sorting. Finally, it explicitly requires the two operators that
it needs to do the sort: Should_Precede and Swap. The sort algorithm is encapsulated

257

Reusability

without reference to any data type. The generic can be instantiated to sort an array of any
data type. 8.3.5 Using Generic Units for Data Abstraction

guideline
• Consider using abstract data types (not to be confused with Ada's abstract types) in
preference to abstract data objects.

• Consider using generic units to implement abstract data types independently of their
component data type.

example
This example presents a series of different techniques that can be used to generate abstract
data types and objects. A discussion of the merits of each follows in the rationale section
below. The first is an abstract data object (ADO), which can be used to encapsulate an
abstract state machine. It encapsulates one stack of integers:
--
package Bounded_Stack is

subtype Element is Integer;
Maximum_Stack_Size : constant := 100;
procedure Push (New_Element : in Element);
procedure Pop (Top_Element : out Element);
Overflow : exception;
Underflow : exception;
...

end Bounded_Stack;
--

The second example is an abstract data type (ADT). It differs from the ADO by exporting
the Stack type, which allows the user to declare any number of stacks of integers. Because
multiple stacks may now exist, it is necessary to specify a Stack argument on calls to Push
and Pop:
--
package Bounded_Stack is

subtype Element is Integer;
type Stack is limited private;
Maximum_Stack_Size : constant := 100;
procedure Push (On_Top : in out Stack;

New_Element : in Element);
procedure Pop (From_Top : in out Stack;

Top_Element : out Element);
Overflow : exception;
Underflow : exception;
...

private
type Stack_Information;
type Stack is access Stack_Information;

end Bounded_Stack;
--

The third example is a parameterless generic abstract data object (GADO). It differs from
the ADO (the first example) simply by being generic, so that the user can instantiate it
multiple times to obtain multiple stacks of integers:

258

Adaptability

--
generic
package Bounded_Stack is

subtype Element is Integer;
Maximum_Stack_Size : constant := 100;
procedure Push (New_Element : in Element);
procedure Pop (Top_Element : out Element);
Overflow : exception;
Underflow : exception;
...

end Bounded_Stack;
--

The fourth example is a slight variant on the third, still a GADO but with parameters. It
differs from the third example by making the data type of the stack a generic parameter so
that stacks of data types other than Integer can be created. Also, Maximum_Stack_Size
has been made a generic parameter that defaults to 100 but can be specified by the user,
rather than a constant defined by the package:
--
generic

type Element is private;
Maximum_Stack_Size : in Natural := 100;

package Bounded_Stack is
procedure Push (New_Element : in Element);
procedure Pop (Top_Element : out Element);
Overflow : exception;
Underflow : exception;
...

end Bounded_Stack;
--

The fifth example is a generic abstract data type (GADT). It differs from the GADO in
the fourth example in the same way that the ADT in the second example differed from the
ADO in the first example; it exports the Stack type, which allows the user to declare any
number of stacks:
--
generic

type Element is private;
Maximum_Stack_Size : in Natural := 100;

package Bounded_Stack is
type Stack is private;
procedure Push (On_Top : in out Stack;

New_Element : in Element);
procedure Pop (From_Top : in out Stack;

Top_Element : out Element);
Overflow : exception;
Underflow : exception;
...

private
type Stack_Information;
type Stack is access Stack_Information;

end Bounded_Stack;
--

rationale
The biggest advantage of an ADT over an ADO (or a GADT over a GADO) is that the user
of the package can declare as many objects as desired with an ADT. These objects can be

259

Reusability

declared as standalone variables or as components of arrays and records. They can also be
passed as parameters. None of this is possible with an ADO, where the single data object is
encapsulated inside of the package. Furthermore, an ADO provides no more protection of
the data structure than an ADT. When a private type is exported by the ADT package, as
in the example above, then for both the ADO and ADT, the only legal operations that can
modify the data are those defined explicitly by the package (in this case, Push and Pop).
For these reasons, an ADT or GADT is almost always preferable to an ADO or GADO,
respectively.

A GADO is similar to an ADT in one way: it allows multiple objects to be created by the
user. With an ADT, multiple objects can be declared using the type defined by the ADT
package. With a GADO (even a GADO with no generic formal parameters, as shown in the
third example), the package can be instantiated multiple times to produce multiple objects.
However, the similarity ends there. The multiple objects produced by the instantiations
suffer from all restrictions described above for ADOs; they cannot be used in arrays or
records or passed as parameters. Furthermore, the objects are each of a different type, and
no operations are defined to operate on more than one of them at a time. For example,
there cannot be an operation to compare two such objects or to assign one to another. The
multiple objects declared using the type defined by an ADT package suffer from no such
restrictions; they can be used in arrays and records and can be passed as parameters. Also,
they are all declared to be of the same type, so that it is possible for the ADT package
to provide operations to assign, compare, copy, etc. For these reasons, an ADT is almost
always preferable to a parameterless GADO.

The biggest advantage of a GADT or GADO over an ADT or ADO, respectively, is that
the GADT and GADO are generic and can thus be parameterized with types, subprograms,
and other configuration information. Thus, as shown above, a single generic package can
support bounded stacks of any data type and any stack size, while the ADT and ADO above
are restricted to stacks of Integer, no more than 100 in size. For this reason, a GADO or
GADT is almost always preferable to an ADO or ADT.

The list of examples above is given in order of increasing power and flexibility, starting
with an ADO and ending with a GADT. These advantages are not expensive in terms of
complexity or development time. The specification of the GADT above is not significantly
harder to write or understand than the specification of the ADO. The bodies are also nearly
identical.

Compare the body for the simplest version, the ADO:

package body Bounded_Stack is
type Stack_Slots is array (Natural range <>) of Element;
type Stack_Information is

record
Slots : Stack_Slots (1 .. Maximum_Stack_Size);
Index : Natural := 0;

end record;
Stack : Stack_Information;

procedure Push (New_Element : in Element) is
begin

if Stack.Index >= Maximum_Stack_Size then
raise Overflow;

end if;
Stack.Index := Stack.Index + 1;

260

Adaptability

Stack.Slots(Stack.Index) := New_Element;
end Push;

procedure Pop (Top_Element : out Element) is
begin

if Stack.Index <= 0 then
raise Underflow;

end if;
Top_Element := Stack.Slots(Stack.Index);
Stack.Index := Stack.Index - 1;

end Pop;

...

end Bounded_Stack;

with the body for the most powerful and flexible version, the GADT:

package body Bounded_Stack is
type Stack_Slots is array (Natural range <>) of Element;
type Stack_Information is

record
Slots : Stack_Slots (1 .. Maximum_Stack_Size);
Index : Natural := 0;

end record;

procedure Push (On_Top : in out Stack;

New_Element : in Element) is
begin

if On_Top.Index >= Maximum_Stack_Size then
raise Overflow;

end if;
On_Top.Index := On_Top.Index + 1;
On_Top.Slots(On_Top.Index) := New_Element;

end Push;

procedure Pop (From_Top : in out Stack;

Top_Element : out Element) is
begin

if From_Top.Index <= 0 then
raise Underflow;

end if;
Top_Element := From_Top.Slots(From_Top.Index);

From_Top.Index := From_Top.Index - 1;
end Pop;

...

end Bounded_Stack;

There is only one difference. The ADO declares a local object called Stack, while the GADT
has one additional parameter (called Stack) on each of the exported procedures Push and
Pop.

9.4.5 Iterators
guideline
• Provide iterators for traversing complex data structures within reusable parts.

261

Reusability

• Consider providing both active and passive iterators.
• Protect the iterators from errors due to modification of the data structure during iteration.
• Document the behavior of the iterators when the data structure is modified during traver-
sal.

example
Ada provides several mechanisms for building reusable iterators. The following examples
discuss the alternatives of ”simple” generics, access discriminants, and type extension. The
terms active and passive are used to differentiate whether the iteration mechanism (i.e.,
the way in which the complex data structure is traversed) is exposed or hidden. A passive
iterator hides the traversal (e.g., looping mechanism) and consists of a single operation,
iterate, that is parameterized by the processing you do on each element of the data structure.
By contrast, an active iterator exposes the primitive operations by which you traverse the
data structure (Booch 1987).

The first example shows a generic package that defines an abstract list data type, with both
active and passive iterators for traversing a list:
--
generic

type Element is limited private;
...

package Unbounded_List is
type List is limited private;
procedure Insert (New_Element : in Element;

Into : in out List);
-- Passive (generic) iterator.
generic

with procedure Process (Each : in out Element);
procedure Iterate (Over : in List);
-- Active iterator
type Iterator is limited private;

procedure Initialize (Index : in out Iterator;
Existing_List : in List);

function More (Index : in Iterator)
return Boolean;

-- The procedure Get_Next combines an "Advance" and "Current" function
procedure Get_Next (Index : in out Iterator;

Current_Element : out Element);
...

private
...

end Unbounded_List;
--

After instantiating the generic package and declaring a list as:
--
with Unbounded_List;
procedure List_User is

type Employee is ...;
package Roster is

new Unbounded_List (Element => Employee, ...);
Employee_List : Roster.List;

262

Adaptability

the passive iterator is instantiated, specifying the name of the routine that should be called
for each list element when the iterator is called.

procedure Process_Employee (Each : in out Employee) is
begin

...
-- Perform the required action for EMPLOYEE here.

end Process_Employee;

procedure Process_All is

new Roster.Iterate (Process => Process_Employee);

The passive iterator can then be called as:
begin -- List_User

Process_All (Employee_List);
end List_User;
--

Alternatively, the active iterator can be used without the second instantiation required by
the passive iterator:

Iterator : Roster.Iterator;
Current_Employee : Employee;
procedure Process_Employee (Each : in Employee) is separate;

begin -- List_User
Roster.Initialize (Index => Iterator,

Existing_List => Employee_List);

while Roster.More (Iterator) loop

Roster.Get_Next (Index => Iterator,
Current_Element => Current_Employee);

Process_Employee (Current_Employee);

end loop;
end List_User;
--

The second example shows a code excerpt from Rationale (1995, §3.7.1) on how to construct
iterators using access discriminants:
generic

type Element is private;
package Sets is

type Set is limited private;
... -- various set operations
type Iterator (S : access Set) is limited private;
procedure Start (I : Iterator);
function Done (I : Iterator) return Boolean;
procedure Next (I : in out Iterator);
... -- other iterator operations

private
type Node;
type Ptr is access Node;
type Node is

record
E : Element;
Next : Ptr;

end record;
type Set is new Ptr;

263

Reusability

type Iterator (S : access Set) is
record

This : Ptr;
end record;

end Sets;
package body Sets is

... -- bodies of the various set operations
procedure Start (I : in out Iterator) is
begin

I.This := Ptr(I.S.all);
end Start;
function Done (I : Iterator) return Boolean is
begin

return I.This = null;
end Done;
procedure Next (I : in out Iterator) is
begin

I.This := I.This.Next;
end Next;
...

end Sets;

The iterator operations allow you to iterate over the elements of the set with the component
This of the iterator object accessing the current element. The access discriminant always
points to the enclosing set to which the current element belongs.

The third example uses code fragments from Rationale (1995, §4.4.4) to show an iterator
using type extension and dispatching:
type Element is ...
package Sets is

type Set is limited private;
-- various set operations
type Iterator is abstract tagged null record;
procedure Iterate (S : in Set; IC : in out Iterator'Class);
procedure Action (E : in out Element;

I : in out Iterator) is abstract;
private

-- definition of Node, Ptr (to Node), and Set
end Sets;
package body Sets is

...
procedure Iterate (S : in Set; IC : in out Iterator'Class) is

This : Ptr := Ptr (S);
begin

while This /= null loop
Action (This.E, IC); -- dispatch
This := This.Next;

end loop;
end Iterate;

end Sets;

The general purpose iterator looks like this:
package Sets.Something is

procedure Do_Something (S : Set; P : Parameters);
end Sets.Something;
package body Sets.Something is

type My_Iterator is new Iterator with
record

-- components for parameters and workspace
end record;

264

Adaptability

procedure Action (E : in out Element;
I : in out My_Iterator) is

begin
-- do something to element E using data from iterator I

end Action;
procedure Do_Something (S : Set; P : Parameters) is

I : My_Iterator;
begin -- Do_Something

... -- copy parameters into iterator
Iterate (S, I);
... copy any results from iterator back to parameters

end Do_Something;

end Sets.Something;

rationale
Iteration over complex data structures is often required and, if not provided by the part
itself, can be difficult to implement without violating information hiding principles.

Active and passive iterators each have their advantages, but neither is appropriate in all
situations. Therefore, it is recommended that both be provided to give the user a choice of
which to use in each situation.

Passive iterators are simpler and less error-prone than active iterators, in the same way that
the for loop is simpler and less error-prone than the while loop. There are fewer mistakes
that the user can make in using a passive iterator. Simply instantiate it with the routine
to be executed for each list element, and call the instantiation for the desired list. Active
iterators require more care by the user. Care must be taken to invoke the iterator operations
in the proper sequence and to associate the proper iterator variable with the proper list
variable. It is possible for a change made to the software during maintenance to introduce
an error, perhaps an infinite loop.

On the other hand, active iterators are more flexible than passive iterators. With a passive
iterator, it is difficult to perform multiple, concurrent, synchronized iterations. For example,
it is much easier to use active iterators to iterate over two sorted lists, merging them into
a third sorted list. Also, for multidimensional data structures, a small number of active
iterator routines may be able to replace a large number of passive iterators, each of which
implements one combination of the active iterators. Finally, active iterators can be passed
as generic formal parameters while passive iterators cannot because passive iterators are
themselves generic, and generic units cannot be passed as parameters to other generic
units.

For either type of iterator, semantic questions can arise about what happens when the
data structure is modified as it is being iterated. When writing an iterator, be sure to
consider this possibility, and indicate with comments the behavior that occurs in such a
case. It is not always obvious to the user what to expect. For example, to determine the
”closure” of a mathematical ”set” with respect to some operation, a common algorithm is
to iterate over the members of the set, generating new elements and adding them to the
set. In such a case, it is important that elements added to the set during the iteration be
encountered subsequently during the iteration. On the other hand, for other algorithms, it
may be important that the iterated set is the same set that existed at the beginning of the

265

Reusability

iteration. In the case of a prioritized list data structure, if the list is iterated in priority order,
it may be important that elements inserted at lower priority than the current element during
iteration not be encountered subsequently during the iteration but that elements inserted
at a higher priority should be encountered. In any case, make a conscious decision about
how the iterator should operate, and document that behavior in the package specification.

Deletions from the data structure also pose a problem for iterators. It is a common mistake
for a user to iterate over a data structure, deleting it piece by piece during the iteration.
If the iterator is not prepared for such a situation, it is possible to end up dereferencing
a null pointer or committing a similar error. Such situations can be prevented by storing
extra information with each data structure, which indicates whether it is currently being
iterated, and using this information to disallow any modifications to the data structure
during iteration. When the data structure is declared as a limited private type, as should
usually be the case when iterators are involved, the only operations defined on the type are
declared explicitly in the package that declares the type, making it possible to add such
tests to all modification operations.

The Rationale (1995, §4.4.4) notes that the access discriminant and type extension tech-
niques are inversions of each other. In the access discriminant approach, you have to write
out the looping mechanism for each action. In the type extension approach, you write one
loop and dispatch to the desired action. Thus, an iterator that uses the access discrimi-
nant technique would be considered active, while an iterator that uses the type extension
technique would be considered passive.

notes
You can use an access to subprogram type as an alternative to generic instantiation, using
a nongeneric parameter as a pointer to subprogram. You would then apply the referenced
subprogram to every element in a collection (Rationale 1995, §3.7.2). There are drawbacks
to this approach, however, because you cannot use it to create a general purpose iterator.
Anonymous access to subprogram parameters is not allowed in Ada; thus, the following
fragment is illegal:
procedure Iterate (C : Collection;

Action : access procedure (E : in out Element));

The formal parameter Action must be of a named access subtype, as in:
type Action_Type is access procedure (E : in out Element);
procedure Iterate (C : Collection;

Action : Action_Type);

In order for this to work, you must make sure that the action subprogram is in scope and
not defined internal to another subprogram. If it is defined as a nested procedure, it would
be illegal to access it. See the Rationale (1995, §4.4.4) for a more complete example.

For further discussion of passive and active iterators, see the Rationale (1995, §3.7.1 and
§4.4.4), Ross (1989), and Booch (1987).

266

Adaptability

9.4.6 Decimal Type Output and Information Systems Annex
guideline
• Localize the currency symbol, digits separator, radix mark, and fill character in picture
output.

• Consider using the # character in picture layouts so that the edited numeric output
lengths are invariant across currency symbols of different lengths.

example
with Ada.Text_IO.Editing;
package Currency is

type Dollars is delta 0.01 digits 10;
type Marks is delta 0.01 digits 10;

package Dollar_Output is
new Ada.Text_IO.Editing.Decimal_Output

(Num => Dollars,
Default_Currency => "$",
Default_Fill => '*',
Default_Separator => ',',
Default_Radix_Mark => '.');

package Mark_Output is
new Ada.Text_IO.Editing.Decimal_Output

(Num => Marks,
Default_Currency => "DM",
Default_Fill => '*',
Default_Separator => '.',
Default_Radix_Mark => ',');

end Currency;
with Ada.Text_IO.Editing;
with Currency; use Currency;
procedure Test_Picture_Editing is

DM_Amount : Marks;
Dollar_Amount : Dollars;

Amount_Picture : constant Ada.Text_IO.Editing.Picture
:= Ada.Text_IO.Editing.To_Picture ("##ZZ_ZZZ_ZZ9.99");

begin -- Test_Picture_Editing

DM_Amount := 1_234_567.89;
Dollar_Amount := 1_234_567.89;

DM_Output.Put (Item => DM_Amount,
Pic => Amount_Picture);

Dollar_Output.Put (Item => Dollar_Amount,
Pic => Amount_Picture);

end Test_Picture_Editing;

rationale
Currencies differ in how they are displayed in a report. Currencies use different symbols
of different lengths (e.g., the American $, the German DM, and the Austrian ÖS). They
use different symbols to separate digits. The United States and the United Kingdom use

267

Reusability

the comma to separate groups of thousands, whereas Continental Europe uses the period.
The United States and the United Kingdom use a period as a decimal point; Continental
Europe uses the comma. For a program involving financial calculations that is to be reused
across countries, you need to take these differences into account. By encapsulating them,
you limit the impact of change in adapting the financial package.

9.4.7 Implementing Mixins
guideline
• Consider using abstract tagged types and generics to define reusable units of functionality
that can be ”mixed into” core abstractions (also known as mixins).

example
Note the use of an abstract tagged type as a generic formal parameter and as the exported
extended type in the pattern that follows, excerpted from the Rationale (1995, §4.6.2):
generic

type S is abstract tagged private;
package P is

type T is abstract new S with private;
-- operations on T

private
type T is abstract new S with

record
-- additional components

end record;
end P;

The following code shows how the generic might be instantiated to ”mixin” the desired
features in the final type extension. See also Guideline 9.5.1 for a related example of code.
-- Assume that packages P1, P2, P3, and P4 are generic packages which take a
tagged
-- type as generic formal type parameter and which export a tagged type T
package Q is

type My_T is new Basic_T with private;
... -- exported operations

private
package Feature_1 is new P1 (Basic_T);
package Feature_2 is new P2 (Feature_1.T);
package Feature 3 is new P3 (Feature_2.T);
package Feature_4 is new P4 (Feature_3.T);
-- etc.
type My_T is new Feature_4.T with null record;

end Q;

rationale
The Rationale (1995, §4.6.2) discusses the use of a generic template to define the properties
to be mixed in to your abstraction:

The generic template defines the mixin. The type supplied as generic actual parameter
determines the parent . . . the body provides the operations and the specification exports
the extended type.

268

Independence

If you have defined a series of generic mixin packages, you would then serialize the instan-
tiations. The actual parameter to the next instantiation is the exported tagged type from
the previous instantiation. This is shown in the second code segment in the example. Each
extension is derived from a previous extension, so you have a linearized succession of over-
riding subprograms. Because they are linearized, you have a derivation order you can use
to resolve any conflicts.

You should encapsulate one extension (and related operations) per generic package. This
provides a better separation of concerns and more maintainable, reusable components.

See Guideline 9.5.1 for a full discussion of the use of mixins.

9.5 Independence
A reusable part should be as independent as possible from other reusable parts. A potential
user is less inclined to reuse a part if that part requires the use of other parts that seem
unnecessary. The ”extra baggage” of the other parts wastes time and space. A user would
like to be able to reuse only that part that is perceived as useful. The concept of a ”part” is
intentionally vague here. A single package does not need to be independent of each other
package in a reuse library if the ”parts” from that library that are typically reused are entire
subsystems. If the entire subsystem is perceived as providing a useful function, the entire
subsystem is reused. However, the subsystem should not be tightly coupled to all the other
subsystems in the reuse library so that it is difficult or impossible to reuse the subsystem
without reusing the entire library. Coupling between reusable parts should only occur when
it provides a strong benefit perceptible to the user.

9.5.1 Subsystem Design
guideline
• Consider structuring subsystems so that operations that are only used in a particular
context are in different child packages than operations used in a different context.

• Consider declaring context-independent functionality in the parent package and context-
dependent functionality in child packages.

rationale
The generic unit is a basic building block. Generic parameterization can be used to break
dependencies between program units so that they can be reused separately. However, it
is often the case that a set of units, particularly a set of packages, are to be reused to-
gether as a subsystem. In this case, the packages can be collected into a hierarchy of child
packages, with private packages to hide internal details. The hierarchy may or may not
be generic. Using the child packages allows subsystems to be reused without incorporating
too many extraneous operations because the unused child packages can be discarded in the
new environment.

See also Guidelines 4.1.6 and 8.3.1.

269

Reusability

9.5.2 Using Generic Parameters to Reduce Coupling
guideline
• Minimize with clauses on reusable parts, especially on their specifications.
• Consider using generic parameters instead of with statements to reduce the number of
context clauses on a reusable part.

• Consider using generic formal package parameters to import directly all the types and
operations defined in an instance of a preexisting generic.

example
A procedure like the following:
--
with Package_A;
procedure Produce_And_Store_A is

...
begin -- Produce_And_Store_A

...
Package_A.Produce (...);
...
Package_A.Store (...);
...

end Produce_And_Store_A;
--

can be rewritten as a generic unit:
--
generic

with procedure Produce (...);
with procedure Store (...);

procedure Produce_And_Store;
--
procedure Produce_And_Store is

...
begin -- Produce_And_Store

...
Produce (...);
...
Store (...);
...

end Produce_And_Store;
--

and then instantiated:
--
with Package_A;
with Produce_And_Store;
procedure Produce_And_Store_A is

new Produce_And_Store (Produce => Package_A.Produce,
Store => Package_A.Store);

--

rationale
Context (with) clauses specify the names of other units upon which this unit depends. Such
dependencies cannot and should not be entirely avoided, but it is a good idea to minimize

270

Independence

the number of them that occur in the specification of a unit. Try to move them to the
body, leaving the specification independent of other units so that it is easier to understand
in isolation. Also, organize your reusable parts in such a way that the bodies of the units
do not contain large numbers of dependencies on each other. Partitioning your library into
independent functional areas with no dependencies spanning the boundaries of the areas
is a good way to start. Finally, reduce dependencies by using generic formal parameters
instead of with statements, as shown in the example above. If the units in a library are too
tightly coupled, then no single part can be reused without reusing most or all of the library.

The first (nongeneric) version of Produce_And_Store_A above is difficult to reuse because
it depends on Package_A that may not be general purpose or generally available. If the
operation Produce_And_Store has reuse potential that is reduced by this dependency, a
generic unit and an instantiation should be produced as shown above. The with clause
for Package_A has been moved from the Produce_And_Store generic procedure, which
encapsulates the reusable algorithm to the Produce_And_Store_A instantiation. Instead
of naming the package that provides the required operations, the generic unit simply lists
the required operations themselves. This increases the independence and reusability of the
generic unit.

This use of generic formal parameters in place of with clauses also allows visibility at a finer
granularity. The with clause on the nongeneric version of Produce_And_Store_A makes
all of the contents of Package_A visible to Produce_And_Store_A, while the generic
parameters on the generic version make only the Produce and Store operations available to
the generic instantiation.

Generic formal packages allow for ”safer and simpler composition of generic abstractions” (
Rationale 1995, §12.6). The generic formal package allows you to group a set of related types
and their operations into a single unit, avoiding having to list each type and operation as an
individual generic formal parameter. This technique allows you to show clearly that you are
extending the functionality of one generic with another generic, effectively parameterizing
one abstraction with another.

9.5.3 Coupling Due to Pragmas
guideline
• In the specification of a generic library unit, use pragma Elaborate_Body.

example

generic

...
package Stack is

pragma Elaborate_Body (Stack); -- in case the body is not yet elaborated

...
end Stack;

with Stack;
package My_Stack is

new Stack (...);

271

Reusability

package body Stack is
begin

...
end Stack;

rationale
The elaboration order of compilation units is only constrained to follow the compilation
order. Furthermore, any time you have an instantiation as a library unit or an instantiation
in a library package, Ada requires that you elaborate the body of the generic being instanti-
ated before elaborating the instantiation itself. Because a generic library unit body may be
compiled after an instantiation of that generic, the body may not necessarily be elaborated
at the time of the instantiation, causing a Program_Error. Using pragma Elaborate_Body
avoids this by requiring that the generic unit body be elaborated immediately after the
specification, whatever the compilation order.

When there is clear requirement for a recursive dependency, you should use pragma Elabo-
rate_Body. This situation arises, for example, when you have a recursive dependency (i.e.,
package A's body depends on package B's specification and package B's body depends on
package A's specification).

notes
Pragma Elaborate_All controls the order of elaboration of one unit with respect to another.
This is another way of coupling units and should be avoided when possible in reusable
parts because it restricts the number of configurations in which the reusable parts can be
combined. Recognize, however, that pragma Elaborate_All provides a better guarantee of
elaboration order because if using this pragma uncovers elaboration problems, they will be
reported at link time (as opposed to a run-time execution error).

Any time you call a subprogram (typically a function) during the elaboration of a library
unit, the body of the subprogram must have been elaborated before the library unit. You
can ensure this elaboration happens by adding a pragma Elaborate_Body for the unit
containing the function. If, however, that function calls other functions, then it is safer to
put a pragma Elaborate_All on the unit containing the function.

For a discussion of the pragmas Pure and Preelaborate, see also the Ada Reference Manual
(1995, §§10.2.1 11 [Annotated12]) and the Rationale (1995, §10.3). If you use either pragma
Pure or Preelaborate, you will not need the pragma Elaborate_Body.

The idea of a registry is fundamental to many object-oriented programming frameworks.
Because other library units will need to call it during their elaboration, you need to make
sure that the registry itself is elaborated early. Note that the registry should only depend
on the root types of the type hierarchies and that the registry should only hold ”class-wide”
pointers to the objects, not more specific pointers. The root types should not themselves
depend on the registry. See Chapter 9 for a more complete discussion of the use of object-
oriented features.

11 http://www.adaic.com/standards/95lrm/html/RM-10-2-1.html

272

http://www.adaic.com/standards/95lrm/html/RM-10-2-1.html

Independence

9.5.4 Part Families
guideline
• Create families of generic or other parts with similar specifications.

example
The Booch parts (Booch 1987) are an example of the application of this guideline.

rationale
Different versions of similar parts (e.g., bounded versus unbounded stacks) may be needed
for different applications or to change the properties of a given application. Often, the
different behaviors required by these versions cannot be obtained using generic parameters.
Providing a family of parts with similar specifications makes it easy for the programmer to
select the appropriate one for the current application or to substitute a different one if the
needs of the application change.

notes
A reusable part that is structured from subparts that are members of part families is
particularly easy to tailor to the needs of a given application by substitution of family
members.

Guideline 9.2.4 discusses the use of tagged types in building different versions of similar
parts (i.e., common interface, multiple implementations).

9.5.5 Conditional Compilation
guideline
• Structure reusable code to take advantage of dead code removal by the compiler.

example
--
package Matrix_Math is

...
type Algorithm is (Gaussian, Pivoting, Choleski, Tri_Diagonal);
generic

Which_Algorithm : in Algorithm := Gaussian;
procedure Invert (...);

end Matrix_Math;
--
package body Matrix_Math is

...

procedure Invert (...) is

...
begin -- Invert

case Which_Algorithm is
when Gaussian => ... ;
when Pivoting => ... ;

273

Reusability

when Choleski => ... ;
when Tri_Diagonal => ... ;

end case;
end Invert;

end Matrix_Math;
--

rationale
Some compilers omit object code corresponding to parts of the program that they detect
can never be executed. Constant expressions in conditional statements take advantage
of this feature where it is available, providing a limited form of conditional compilation.
When a part is reused in an implementation that does not support this form of conditional
compilation, this practice produces a clean structure that is easy to adapt by deleting or
commenting out redundant code where it creates an unacceptable overhead.

This feature should be used when other factors prevent the code from being separated into
separate program units. In the above example, it would be preferable to have a different
procedure for each algorithm. But the algorithms may differ in slight but complex ways to
make separate procedures difficult to maintain.

caution
Be aware of whether your implementation supports dead code removal, and be prepared to
take other steps to eliminate the overhead of redundant code if necessary.

9.5.6 Table-Driven Programming
guideline
• Write table-driven reusable parts wherever possible and appropriate.

example
The epitome of table-driven reusable software is a parser generation system. A specification
of the form of the input data and of its output, along with some specialization code, is con-
verted to tables that are to be ”walked” by preexisting code using predetermined algorithms
in the parser produced. Other forms of ”application generators” work similarly.

rationale
Table-driven (sometimes known as data-driven) programs have behavior that depends on
data with'ed at compile time or read from a file at run-time. In appropriate circumstances,
table-driven programming provides a very powerful way of creating general-purpose, easily
tailorable, reusable parts.

See Guideline 5.3.4 for a short discussion of using access-to-subprogram types in implement-
ing table-driven programs.

274

Independence

notes
Consider whether differences in the behavior of a general-purpose part could be defined by
some data structure at compile- or run-time, and if so, structure the part to be table-driven.
The approach is most likely to be applicable when a part is designed for use in a particular
application domain but needs to be specialized for use in a specific application within the
domain. Take particular care in commenting the structure of the data needed to drive the
part.

Table-driven programs are often more efficient and easier to read than the corresponding
case or if-elsif-else networks to compute the item being sought or looked up.

9.5.7 String Handling
guideline
• Use the predefined packages for string handling.

example
Writing code such as the following is no longer necessary in Ada 95:
function Upper_Case (S : String) return String is

subtype Lower_Case_Range is Character range 'a'..'z';

Temp : String := S;
Offset : constant := Character'Pos('A') - Character'Pos('a');

begin
for Index in Temp'Range loop

if Temp(Index) in Lower_Case_Range then
Temp(Index) := Character'Val (Character'Pos(Temp(Index)) + Offset);

end if;
end loop;
return Temp;

end Upper_Case;

with Ada.Characters.Latin_1;
function Trim (S : String) return String is

Left_Index : Positive := S'First;
Right_Index : Positive := S'Last;
Space : constant Character := Ada.Characters.Latin_1.Space;

begin
while (Left_Index < S'Last) and then (S(Left_Index) = Space) loop

Left_Index := Positive'Succ(Left_Index);
end loop;

while (Right_Index > S'First) and then (S(Right_Index) = Space) loop
Right_Index := Positive'Pred(Right_Index);

end loop;

return S(Left_Index..Right_Index);
end Trim;

Assuming a variable S of type String, the following expression:
Upper_Case(Trim(S))

275

Reusability

can now be replaced by more portable and preexisting language-defined operations such as:
with Ada.Characters.Handling; use Ada.Characters.Handling;
with Ada.Strings; use Ada.Strings;
with Ada.Strings.Fixed; use Ada.Strings.Fixed;

...
To_Upper (Trim (Source => S, Side => Both))

rationale
The predefined Ada language environment includes string handling packages to encourage
portability. They support different categories of strings: fixed length, bounded length, and
unbounded length. They also support subprograms for string construction, concatenation,
copying, selection, ordering, searching, pattern matching, and string transformation. You
no longer need to define your own string handling packages.

9.5.8 Tagged Type Hierarchies
guideline
• Consider using hierarchies of tagged types to promote generalization of software for reuse.
• Consider using a tagged type hierarchy to decouple a generalized algorithm from the
details of dependency on specific types.

example
with Wage_Info;
package Personnel is

type Employee is abstract tagged limited private;
type Employee_Ptr is access all Employee'Class;
...
procedure Compute_Wage (E : Employee) is abstract;

private
type Employee is tagged limited record

Name : ...;
SSN : ... ;
Rates : Wage_Info.Tax_Info;
...

end record;
end Personnel;
package Personnel.Part_Time is

type Part_Timer is new Employee with private;
...
procedure Compute_Wage (E : Part_Timer);

private
...

end Personnel.Part_Time;
package Personnel.Full_Time is

type Full_Timer is new Employee with private;
...
procedure Compute_Wage (E : Full_Timer);

private
...

end Personnel.Full_Time;

Given the following array declaration:

276

Summary

type Employee_List is array (Positive range <>) of Personnel.Employee_Ptr;

you can write a procedure that computes the wage of each employee, regardless of the differ-
ent types of employees that you create. The Employee_List consists of an array of pointers
to the various kinds of employees, each of which has an individual Compute_Wage proce-
dure. (The primitive Compute_Wage is declared as an abstract procedure and, therefore,
must be overridden by all descendants.) You will not need to modify the payroll code as
you specialize the kinds of employees:
procedure Compute_Payroll (Who : Employee_List) is
begin -- Compute_Payroll

for E in Who'Range loop
Compute_Wage (Who(E).all);

end loop;
end Compute_Payroll;

rationale
The general algorithm can depend polymorphically on objects of the class-wide type of the
root tagged type without caring what specialized types are derived from the root type. The
generalized algorithm does not need to be changed if additional types are added to the type
hierarchy. See also Guideline 5.4.2. Furthermore, the child package hierarchy then mirrors
the inheritance hierarchy.

A general root tagged type can define the common properties and have common operations
for a hierarchy of more specific types. Software that depends only on this root type will be
general, in that it can be used with objects of any of the more specific types. Further, the
general algorithms of clients of the root type do not have to be changed as more specific
types are added to the type hierarchy. This is a particularly effective way to organize
object-oriented software for reuse.

Separating the hierarchy of derived tagged types into individual packages enhances reusabil-
ity by reducing the number of items in package interfaces. It also allows you to with only
the capabilities needed.

See also Guidelines 9.2, 9.3.1, 9.3.5, and 9.4.1.

9.6 Summary
9.6.1 understanding and clarity
• Select the least restrictive names possible for reusable parts and their identifiers.
• Select the generic name to avoid conflicting with the naming conventions of instantiations
of the generic.

• Use names that indicate the behavioral characteristics of the reusable part, as well as its
abstraction .

• Do not use abbreviations in identifier or unit names.
• Document the expected behavior of generic formal parameters just as you document any
package specification.

277

Reusability

9.6.2 robustness
• Use named numbers and static expressions to allow multiple dependencies to be linked
to a small number of symbols.

• Use unconstrained array types for array formal parameters and array return values.
• Make the size of local variables depend on actual parameter size, where appropriate.
• Minimize the number of assumptions made by a unit.
• For assumptions that cannot be avoided, use subtypes or constraints to automatically
enforce conformance.

• For assumptions that cannot be automatically enforced by subtypes, add explicit checks
to the code.

• Document all assumptions.
• If the code depends upon the implementation of a specific Special Needs Annex for proper
operation, document this assumption in the code.

• Use first subtypes when declaring generic formal objects of mode in out.
• Beware of using subtypes as subtype marks when declaring parameters or return values
of generic formal subprograms.

• Use attributes rather than literal values.
• Be careful about overloading the names of subprograms exported by the same generic
package.

• Within a specification, document any tasks that would be activated by with'ing the
specification and by using any part of the specification.

• Document which generic formal parameters are accessed from a task hidden inside the
generic unit.

• Document any multithreaded components.
• Propagate exceptions out of reusable parts. Handle exceptions within reusable parts only
when you are certain that the handling is appropriate in all circumstances.

• Propagate exceptions raised by generic formal subprograms after performing any cleanup
necessary to the correct operation of future invocations of the generic instantiation.

• Leave state variables in a valid state when raising an exception.
• Leave parameters unmodified when raising an exception.

9.6.3 adaptability
• Provide core functionality in a reusable part or set of parts so that the functionality in
this abstraction can be meaningfully extended by its reusers.

• More specifically, provide initialization and finalization procedures for every data struc-
ture that may contain dynamic data.

• For data structures needing initialization and finalization, consider deriv-
ing them, when possible, from the types Ada.Finalization.Controlled or
Ada.Finalization.Limited_Controlled.

• Use generic units to avoid code duplication.
• Parameterize generic units for maximum adaptability.
• Reuse common instantiations of generic units, as well as the generic units themselves.
• Consider using a limited private type for a generic formal type when you do not need
assignment on objects of the type inside the generic body.

• Consider using a nonlimited private type for a generic formal type when you need normal
assignment on objects of the type inside the body of the generic.

278

Summary

• Consider using a formal tagged type derived from Ada.Finalization.Controlled when you
need to enforce special assignment semantics on objects of the type in the body of the
generic.

• Export the least restrictive type that maintains the integrity of the data and abstraction
while allowing alternate implementations.

• Consider using a limited private abstract type for generic formal types of a generic that
extends a formal private tagged type.

• Use generic units to encapsulate algorithms independently of data type.
• Consider using abstract data types (not to be confused with Ada's abstract types) in
preference to abstract data objects.

• Consider using generic units to implement abstract data types independently of their
component data type.

• Provide iterators for traversing complex data structures within reusable parts.
• Consider providing both active and passive iterators.
• Protect the iterators from errors due to modification of the data structure during iteration.
• Document the behavior of the iterators when the data structure is modified during traver-
sal.

• Localize the currency symbol, digits separator, radix mark, and fill character in picture
output.

• Consider using the # character in picture layouts so that the edited numeric output
lengths are invariant across currency symbols of different lengths.

• Consider using abstract tagged types and generics to define reusable units of functionality
that can be ”mixed into” core abstractions (also known as mixins).

• Consider structuring subsystems so that operations that are only used in a particular
context are in different child packages than operations used in a different context.

• Consider declaring context-independent functionality in the parent package and context-
dependent functionality in child packages.

9.6.4 independence
• Minimize with clauses on reusable parts, especially on their specifications.
• Consider using generic parameters instead of with statements to reduce the number of
context clauses on a reusable part.

• Consider using generic formal package parameters to import directly all the types and
operations defined in an instance of a preexisting generic.

• In the specification of a generic library unit, use pragma Elaborate_Body.
• Create families of generic or other parts with similar specifications.
• Structure reusable code to take advantage of dead code removal by the compiler.
• Write table-driven reusable parts wherever possible and appropriate.
• Use the predefined packages for string handling.
• Consider using hierarchies of tagged types to promote generalization of software for reuse.
• Consider using a tagged type hierarchy to decouple a generalized algorithm from the
details of dependency on specific types.

279

10 Object-Oriented Features

10.1 Introduction
This chapter recommends ways of using Ada's object-oriented features. Ada supports inher-
itance and polymorphism, providing the programmer some effective techniques and building
blocks. Disciplined use of these features will promote programs that are easier to read and
modify. These features also give the programmer flexibility in building reusable components.

The following definitions are provided in order to make this chapter more understandable.
The essential characteristics of object-oriented programming are encapsulation, inheritance,
and polymorphism. These are defined as follows in the Rationale (1995, §§4.1 and III.1.2):

Inheritance
A means for incrementally building new abstractions from an existing one by ”inheriting”
their properties without disturbing the implementation of the original abstraction or the
existing clients.

Multiple Inheritance
The means of inheriting components and operations from two or more parent abstractions.

Mixin Inheritance
Multiple inheritance in which one or more of the parent abstractions cannot have instances
of their own and exist only to provide a set of properties for abstractions inheriting from
them.

Polymorphism
A means of factoring out the differences among a collection of abstractions, such that
programs may be written in terms of the common properties.

• Static polymorphism is provided through the generic parameter mechanism whereby a
generic unit may be instantiated at compile time with any type from a class of types.

• Dynamic polymorphism is provided through the use of so-called class-wide types and the
distinction is then made at runtime on the basis of the value of the tag (”effectively a
hidden discriminant identifying the type” [Rationale 1995, §II.1]).

As stated in the Ada Reference Manual (1995, Annex N):

A type has an associated set of values and a set of primitive operations that implement
the fundamental aspects of its semantics.

A class is a set of types that is closed under derivation, which means that if a given type
is in the class, then all types derived from that type are also in the class. The set of types

281

Object-Oriented Features

of a class share common properties, such as their primitive operations. The semantics of a
class include expected behavior and exceptions.

An object is either a constant or variable defined from a type (class). An object contains a
value. A subcomponent of an object is itself an object.

Guidelines in this chapter are frequently worded ”consider ...” because hard and fast rules
cannot apply in all situations. The specific choice you make in a given situation involves
design tradeoffs. The rationale for these guidelines is intended to give you insight into some
of these tradeoffs.

10.2 Object-Oriented Design
You will find it easier to take advantage of many of the concepts in this chapter if you have
done an object-oriented design. The results of an object-oriented design would include a set
of meaningful abstractions and hierarchy of classes. The abstractions need to include the
definition of the design objects, including structure and state, the operations on the objects,
and the intended encapsulation for each object. The details on designing these abstractions
and the hierarchy of classes are beyond the scope of this book. A number of good sources
exist for this detail, including Rumbaugh et al. (1991), Jacobson et al. (1992), Software
Productivity Consortium (1993), and Booch (1994).

An important part of the design process is deciding on the overall organization of the
system. Looking at a single type, a single package, or even a single class of types by itself
is probably the wrong place to start. The appropriate level to start is more at the level of
”subsystem” or ”framework.” You should use child packages (Guidelines 4.1.1 and 4.2.2) to
group sets of abstractions into subsystems representing reusable frameworks. You should
distinguish the ”abstract” reusable core of the framework from the particular ”instantiation”
of the framework. Presuming the framework is constructed properly, the abstract core and
its instantiation can be separated into distinct subsystems within the package hierarchy
because the internals of an abstract reusable framework probably do not need to be visible
to a particular instantiation of the framework.

10.3 Tagged Type Hierarchies
You should use inheritance primarily as a mechanism for implementing a class hierarchy
from an object-oriented design. A class hierarchy should be a generalization/specialization
(”is-a”) relationship. This relationship may also be referred to as ”is-a-kind-of,” not to be
confused with ”is an instance of.” This ”is-a” usage of inheritance is in contrast to other
languages in which inheritance is used also to provide the equivalent of the Ada context
clauses with and use. In Ada, you first identify the external modules of interest via with
clauses and then choose selectively whether to make only the name of the module (package)
visible or its contents (via a use clause).

282

Tagged Type Hierarchies

10.3.1 Tagged Types
guideline
• Consider using type extension when designing an is-a (generalization/specialization) hi-
erarchy.

• Use tagged types to preserve a common interface across differing implementations (Taft
1995a).

• When defining a tagged type in a package, consider including a definition of a general
access type to the corresponding class-wide type.

• In general, define only one tagged type per package.

example
Consider the type structure for a set of two-dimensional geometric objects positioned in a
Cartesian coordinate system (Barnes 1996). The ancestor or root type Object is a tagged
record. The components common to this type and all its descendants are an x and y
coordinate. Various descendant types include points, circles, and arbitrary shapes. Except
for points, these descendant types extend the root type with additional components; for
example, the circle adds a radius component:
type Object is tagged

record
X_Coord : Float;
Y_Coord : Float;

end record;

type Circle is new Object with
record

Radius : Float;
end record;

type Point is new Object with null record;

type Shape is new Object with
record

-- other components
...

end record;

The following is an example of general access type to the corresponding class-wide type:
package Employee is

type Object is tagged limited private;
type Reference is access all Object'class;
...

private
...

end Employee;

rationale
You can derive new types from both tagged and untagged types, but the effects of this
derivation are different. When you derive from an untagged type, you are creating a new
type whose implementation is identical to the parent. Values of the derived types are subject
to strong type checking; thus, you cannot mix the proverbial apples and oranges. When

283

Object-Oriented Features

you derive a new type from an untagged type, you are not allowed to extend it with new
components. You are effectively creating a new interface without changing the underlying
implementation (Taft 1995a).

In deriving from a tagged type, you can extend the type with new components. Each
descendant can extend a common interface (the parent's). The union of a tagged type and
its descendants form a class, and a class offers some unique features not available to untagged
derivations. You can write class-wide operations that can be applied to any object that is
a member of the class. You can also provide new implementations for the descendants
of tagged types, either by overriding inherited primitive operations or by creating new
primitive operations. Finally, tagged types can be used as the basis for multiple inheritance
building blocks (see Guideline 9.5.1).

Reference semantics are very commonly used in object-oriented programming. In particular,
heterogeneous polymorphic data structures based on tagged types require the use of access
types. It is convenient to have a common definition for such a type provided to any client
of the package defining the tagged type. A heterogeneous polymorphic data structure is a
composite data structure (such as an array) whose elements have a homogeneous interface
(i.e., an access to class-wide type) and whose elements' implementations are heterogeneous
(i.e., the implementation of the elements uses different specific types). See also Guidelines
9.3.5 on polymorphism and 9.4.1 on managing visibility of tagged type hierarchies.

In Ada, the primitive operations of a type are implicitly associated with the type through
scoping rules. The definition of a tagged type and a set of operations corresponds together
to the ”traditional” object-oriented programming concept of a ”class.” Putting these into a
package provides a clean encapsulation mechanism.

exceptions
If the root of the hierarchy does not define a complete set of values and operations, then
use an abstract tagged type (see Guideline 9.2.4). This abstract type can be thought of as
the least common denominator of the class, essentially a conceptual and incomplete type.

If a descendant needs to remove one of the components or primitive operations of its ances-
tor, it may not be appropriate to extend the tagged type.

An exception to using reference semantics is when a type is exported that would not be
used in a data structure or made part of a collection.

If the implementation of two tagged types requires mutual visibility and the two types are
generally used together, then it may be best to define them together in one package, though
thought should be given to using child packages instead (see Guideline 9.4.1). Also, it can
be convenient to define a small hierarchy of (completely) abstract types (or a small part
of a larger hierarchy) all in one package specification; however, the negative impact on
maintainability may outweigh the convenience. You do not provide a package body in this
situation unless you have declared nonabstract operations on members of the hierarchy.

284

Tagged Type Hierarchies

10.3.2 Properties of Dispatching Operations
guideline
• The implementation of the dispatching operations of each type in a derivation class
rooted in a tagged type T should conform to the expected semantics of the corresponding
dispatching operations of the class-wide type T'Class.

example
The key point of both of the alternatives in the following example is that it must be pos-
sible to use the class-wide type Transaction.Object'Class polymorphically without having
to study the implementations of each of the types derived from the root type Transac-
tion.Object. In addition, new transactions can be added to the derivation class without
invalidating the existing transaction processing code. These are the important practical
consequences of the design rule captured in the guideline:
with Database;
package Transaction is

type Object (Data : access Database.Object'Class) is abstract tagged limited
record

Has_Executed : Boolean := False;
end record;

function Is_Valid (T : Object) return Boolean;
-- checks that Has_Executed is False

procedure Execute (T : in out Object);
-- sets Has_Executed to True

Is_Not_Valid : exception;

end Transaction;

The precondition of Execute(T) for all T in Transaction.Object'Class is that Is_Valid(T)
is True. The postcondition is the T.Has_Executed = True. This model is trivially satisfied
by the root type Transaction.Object.

Consider the following derived type:
with Transaction;
with Personnel;
package Pay_Transaction is

type Object is new Transaction.Object with
record

Employee : Personnel.Name;
Hours_Worked : Personnel.Time;

end record;
function Is_Valid (T : Object) return Boolean;
-- checks that Employee is a valid name, Hours_Worked is a valid
-- amount of work time and Has_Executed = False
procedure Has_Executed (T : in out Object);
-- computes the pay earned by the Employee for the given Hours_Worked
-- and updates this in the database T.Data, then sets Has_Executed to True

end Pay_Transaction;

The precondition for the specific operation Pay_Transaction.Execute(T) is that
Pay_Transaction.Is_Valid(T) is True, which is the same precondition as for the dis-

285

Object-Oriented Features

patching operation Execute on the class-wide type. (The actual validity check is dif-
ferent, but the statement of the ”precondition” is the same.) The postcondition for
Pay_Transaction.Execute(T) includes T.Has_Executed = True but also includes the ap-
propriate condition on T.Data for computation of pay.

The class-wide transaction type can then be properly used as follows:
type Transaction_Reference is access all Transaction.Object'Class;
type Transaction_List is array (Positive range <>) of Transaction_Reference;
procedure Process (Action : in Transaction_List) is
begin

for I in Action'Range loop
-- Note that calls to Is_Valid and Execute are dispatching

if Transaction.Is_Valid(Action(I).all) then
-- the precondition for Execute is satisfied
Transaction.Execute(Action(I).all);
-- the postcondition Action(I).Has_Executed = True is
-- guaranteed to be satisfied (as well as any stronger conditions
-- depending on the specific value of Action(I))

else
-- deal with the error
...

end if;
end loop;

end Process;

If you had not defined the operation Is_Valid on transactions, then the validity condition
for pay computation (valid name and hours worked) would have to directly become the
precondition for Pay_Transaction.Execute. But this would be a ”stronger” precondition
than that on the class-wide dispatching operation, violating the guideline. As a result of
this violation, there would be no way to guarantee the precondition of a dispatching call to
Execute, leading to unexpected failures.

An alternative resolution to this problem is to define an exception to be raised by an
Execute operation when the transaction is not valid. This behavior becomes part of the
semantic model for the class-wide type: the precondition for Execute(T) becomes simply
True (i.e., always valid), but the postcondition becomes ”either” the exception is not raised
and Has_Executed = True ”or” the exception is raised and Has_Executed = False. The im-
plementations of Execute in all derived transaction types would then need to satisfy the new
postcondition. It is important that the ”same” exception be raised by ”all” implementations
because this is part of the expected semantic model of the class-wide type.

With the alternative approach, the above processing loop becomes:
procedure Process (Action : in Transaction_List) is
begin

for I in Action'Range loop

Process_A_Transaction:
begin

-- there is no precondition for Execute
Transaction.Execute (Action(I).all);
-- since no exception was raised, the postcondition
-- Action(I).Has_Executed = True is guaranteed (as well as
-- any stronger condition depending on the specific value of
-- Action(I))

286

Tagged Type Hierarchies

exception
when Transaction.Is_Not_Valid =>

-- the exception was raised, so Action(I).Has_Executed = False

-- deal with the error
...

end Process_A_Transaction;

end loop;

end Process;

rationale
All the properties expected of a class-wide type by clients of that type should be meaningful
for any specific types in the derivation class of the class-wide type. This rule is related to
the object-oriented programming ”substitutability principle” for consistency between the
semantics of an object-oriented superclass and its subclasses (Wegner and Zdonik 1988).
However, the separation of the polymorphic class-wide type T'Class from the root specific
type T in Ada 95 clarifies this principle as a design rule on derivation classes rather than a
correctness principle for derivation itself.

When a dispatching operation is used on a variable of a class-wide type T'Class, the actual
implementation executed will depend dynamically on the actual tag of the value in the
variable. In order to rationally use T'Class, it must be possible to understand the semantics
of the operations on T'Class without having to study the implementation of the operations
for each of the types in the derivation class rooted in T. Further, a new type added to this
derivation class should not invalidate this overall understanding of T'Class because this
could invalidate existing uses of the class-wide type. Thus, there needs to be an overall set
of semantic properties of the operations of T'Class that is preserved by the implementations
of the corresponding dispatching operations of all the types in the derivation class.

One way to capture the semantic properties of an operation is to define a ”precondition”
that must be true before the operation is invoked and a ”postcondition” that must be true
(given the precondition) after the operation has executed. You can (formally or informally)
define pre- and postconditions for each operation of T'Class without reference to the im-
plementations of dispatching operations of specific types. These semantic properties define
the ”minimum” set of properties common to all types in the derivation class. To preserve
this minimum set of properties, the implementation of the dispatching operations of all the
types in the derivation class rooted in T (including the root type T) should have (the same
or) weaker preconditions than the corresponding operations of T'Class and (the same or)
stronger postconditions than the T'Class operations. This means that any invocation of
a dispatching operation on T'Class will result in the execution of an implementation that
requires no more than what is expected of the dispatching operation in general (though it
could require less) and delivers a result that is no less than what is expected (though it
could do more).

287

Object-Oriented Features

exceptions
Tagged types and type extension may sometimes be used primarily for type implementation
reasons rather than for polymorphism and dispatching. In particular, a nontagged private
type may be implemented using a type extension of a tagged type. In such cases, it may not
be necessary for the implementation of the derived type to preserve the semantic properties
of the class-wide type because the membership of the new type in the tagged type derivation
class will not generally be known to clients of the type.

10.3.3 Controlled Types
guideline
• Consider using a controlled type whenever a type allocates resources that must be deal-
located or otherwise ”cleaned up” on destruction or overwriting.

• Use a derivation from a controlled type in preference to providing an explicit ”cleanup”
operation that must be called by clients of the type.

• When overriding the adjustment and finalization procedures derived from controlled
types, define the finalization procedure to undo the effects of the adjustment procedure.

• Derived type initialization procedures should call the initialization procedure of their
parent as part of their type-specific initialization.

• Derived type finalization procedures should call the finalization procedure of their parent
as part of their type-specific finalization.

• Consider deriving a data structure's components rather than the enclosing data structure
from a controlled type.

example
The following example demonstrates the use of controlled types in the implemen-
tation of a simple linked list. Because the Linked_List type is derived from
Ada.Finalization.Controlled, the Finalize procedure will be called automatically when ob-
jects of the Linked_List type complete their scope of execution:
with Ada.Finalization;
package Linked_List_Package is

type Iterator is private;
type Data_Type is ...
type Linked_List is new Ada.Finalization.Controlled with private;
function Head (List : Linked_List) return Iterator;
procedure Get_Next (Element : in out Iterator;

Data : out Data_Type);
procedure Add (List : in out Linked_List;

New_Data : in Data_Type);
procedure Finalize (List : in out Linked_List); -- reset Linked_List

structure
-- Initialize and Adjust are left to the default implementation.

private
type Node;
type Node_Ptr is access Node;
type Node is

record
Data : Data_Type;
Next : Node_Ptr;

end record;
type Iterator is new Node_Ptr;

288

Tagged Type Hierarchies

type Linked_List is new Ada.Finalization.Controlled with
record

Number_Of_Items : Natural := 0;
Root : Node_Ptr;

end record;
end Linked_List_Package;
--
package body Linked_List_Package is

function Head (List : Linked_List) return Iterator is
Head_Node_Ptr : Iterator;

begin
Head_Node_Ptr := Iterator (List.Root);
return Head_Node_Ptr; -- Return the head element of the list

end Head;

procedure Get_Next (Element : in out Iterator;
Data : out Data_Type) is

begin
--
-- Given an element, return the next element (or null)
--

end Get_Next;

procedure Add (List : in out Linked_List;
New_Data : in Data_Type) is

begin
--
-- Add a new element to the head of the list
--

end Add;

procedure Finalize (List : in out Linked_List) is
begin

-- Release all storage used by the linked list
-- and reinitialize.

end Finalize;

end Linked_List_Package;

rationale
The three controlling operations, Initialize, Adjust, and Finalize, serve as automatically
called procedures that control three primitive activities in the life of an object (Ada Refer-
ence Manual 1995, §7.6). When an assignment to an object of a type derived from Controlled
occurs, adjustment and finalization work in tandem. Finalization cleans up the object being
overwritten (e.g., reclaims heap space), then adjustment finishes the assignment work once
the value being assigned has been copied (e.g., to implement a deep copy).

You can ensure that the derived type's initialization is consistent with that of the parent
by calling the parent type's initialization from the derived type's initialization.

You can ensure that the derived type's finalization is consistent with that of the parent by
calling the parent type's finalization from the derived type's finalization.

In general, you should call parent initialization before descendant-specific initialization.
Similarly, you should call parent finalization after descendant-specific finalization. (You
may position the parent initialization and/or finalization at the beginning or end of the
procedure.)

289

Object-Oriented Features

10.3.4 Abstract Types
guideline
• Consider using abstract types and operations in creating classification schemes, for ex-
ample, a taxonomy, in which only the leaf objects will be meaningful in the application.

• Consider declaring root types and internal nodes in a type tree as abstract.
• Consider using abstract types for generic formal derived types.
• Consider using abstract types to develop different implementations of a single abstraction.

example
In a banking application, there are a wide variety of account types, each with different
features and restrictions. Some of the variations are fees, overdraft protection, minimum
balances, allowable account linkages (e.g., checking and savings), and rules on opening the
account. Common to all bank accounts are ownership attributes: unique account number,
owner name(s), and owner tax identification number(s). Common operations across all types
of accounts are opening, depositing, withdrawing, providing current balance, and closing.
The common attributes and operations describe the conceptual bank account. This idealized
bank account can form the root of a generalization/specialization hierarchy that describes
the bank's array of products. By using abstract tagged types, you ensure that only account
objects corresponding to a specific product will be created. Because any abstract operations
must be overridden with each derivation, you ensure that any restrictions for a specialized
account are implemented (e.g., how and when the account-specific fee structure is applied):
--
package Bank_Account_Package is

type Bank_Account_Type is abstract tagged limited private;
type Money is delta 0.01 digits 15;

-- The following abstract operations must be overridden for
-- each derivation, thus ensuring that any restrictions
-- for specialized accounts will be implemented.

procedure Open (Account : in out Bank_Account_Type) is abstract;

procedure Close (Account : in out Bank_Account_Type) is abstract;

procedure Deposit (Account : in out Bank_Account_Type;
Amount : in Money) is abstract;

procedure Withdraw (Account : in out Bank_Account_Type;
Amount : in Money) is abstract;

function Balance (Account : Bank_Account_Type)
return Money is abstract;

private
type Account_Number_Type is ...
type Account_Owner_Type is ...
type Tax_ID_Number_Type is ...

type Bank_Account_Type is abstract tagged limited
record

Account_Number : Account_Number_Type;
Account_Owner : Account_Owner_Type;
Tax_ID_Number : Tax_ID_Number_Type;

end record;

290

Tagged Type Hierarchies

end Bank_Account_Package;
--
-- Now, other specialized accounts such as a savings account can
-- be derived from Bank_Account_Type as in the following example.
-- Note that abstract types are still used to ensure that only
-- account objects corresponding to specific products will be
-- created.with Bank_Account_Package;
with Bank_Account_Package;
package Savings_Account_Package is

type Savings_Account_Type is abstract
new Bank_Account_Package.Bank_Account_Type with private;

-- We must override the abstract operations provided
-- by Bank_Account_Package. Since we are still declaring
-- these operations to be abstract, they must also be
-- overridden by the specializations of Savings_Account_Type.
procedure Open (Account : in out Savings_Account_Type) is abstract;
procedure Close (Account : in out Savings_Account_Type) is abstract;

procedure Deposit (Account : in out Savings_Account_Type;
Amount : in Bank_Account_Package.Money) is abstract;

procedure Withdraw (Account : in out Savings_Account_Type;
Amount : in Bank_Account_Package.Money) is abstract;

function Balance (Account : Savings_Account_Type)
return Bank_Account_Package.Money is abstract;

private
type Savings_Account_Type is abstract

new Bank_Account_Package.Bank_Account_Type with
record

Minimum_Balance : Bank_Account_Package.Money;
end record;

end Savings_Account_Package;

--

See the abstract set package in Guideline 9.5.1 for an example of creating an abstraction
with a single interface and the potential for multiple implementations. The example only
shows one possible implementation; however, you could provide an alternate implementation
of the Hashed_Set abstraction using other data structures.

rationale
In many classification schemes, for example, a taxonomy, only objects at the leaves of the
classification tree are meaningful in the application. In other words, the root of the hierarchy
does not define a complete set of values and operations for use by the application. The use
of ”abstract” guarantees that there will be no objects of the root or intermediate nodes.
Concrete derivations of the abstract types and subprograms are required so that the leaves
of the tree become objects that a client can manipulate.

You can only declare abstract subprograms when the root type is also abstract. This is
useful as you build an abstraction that forms the basis for a family of abstractions. By
declaring the primitive subprograms to be abstract, you can write the ”common class-wide
parts of a system . . . without being dependent on the properties of any specific type at
all” (Rationale 1995, §4.2).

291

Object-Oriented Features

Abstract types and operations can help you resolve problems when your tagged type hier-
archy violates the expected semantics of the class-wide type dispatching operations. The
Rationale (1995, §4.2) explains:

When building an abstraction that is to form the basis of a class of types, it is often conve-
nient not to provide actual subprograms for the root type but just abstract subprograms
which can be replaced when inherited. This is only allowed if the root type is declared
as abstract; objects of an abstract type cannot exist. This technique enables common
class-wide parts of a system to be written without being dependent on the properties of
any specific type at all. Dispatching always works because it is known that there can never
be any objects of the abstract type and so the abstract subprograms could never be called.

See Guidelines 8.3.8 and 9.2.1.

The multiple inheritance techniques discussed in Guideline 9.5.1 make use of abstract tagged
types. The basic abstraction is defined using an abstract tagged (limited) private type
(whose full type declaration is a null record) with a small set of abstract primitive operations.
While abstract operations have no bodies and thus cannot be called, they are inherited.
Derivatives of the abstraction then extend the root type with components that provide the
data representation and override the abstract operations to provide callable implementations
(Rationale 1995, §4.4.3). This technique allows you to build multiple implementations of
a single abstraction. You declare a single interface and vary the specifics of the data
representation and operation implementation.

notes
When you use abstract data types as described in this guideline, you can have multiple
implementations of the same abstraction available to you within a single program. This
technique differs from the idea of writing multiple package bodies to provide different imple-
mentations of the abstraction defined in a package specification because with the package
body technique, you can only include one of the implementations (i.e., bodies) in your
program.

10.4 Tagged Type Operations
You can use three options when you define the operations on a tagged type and its de-
scendants. These categories are primitive abstract, primitive nonabstract, and class-wide
operations. An abstract operation must be overridden for a nonabstract derived type. A
nonabstract operation may be redefined for a subclass. A class-wide operation cannot be
overridden by a subclass definition. A class-wide operation can be redefined for the deriva-
tion class rooted in the derived type; however, this practice is discouraged because of the
ambiguities it introduces in the code. Through careful usage of these options, you can en-
sure that your abstractions preserve class-wide properties, as discussed in Guideline 9.2.1.
As stated above, this principle requires that any type that is visibly derived from some
parent type must fully support the semantics of the parent type.

292

Tagged Type Operations

10.4.1 Primitive Operations and Redispatching
guideline
• Consider declaring a primitive abstract operation based on the absence of a meaningful
”default” behavior.

• Consider declaring a primitive nonabstract operation based on the presence of a mean-
ingful ”default” behavior.

• When overriding an operation, the overriding subprogram should not raise exceptions
that are not known to the users of the overridden subprogram.

• If redispatching is used in the implementation of the operations of a type, with the specific
intent that some of the redispatched-to operations be overridden by specializations for
the derived types, then document this intent clearly in the specification as part of the
”interface” of a parent type with its derived types.

• When redispatching is used (for any reason) in the implementation of a primitive oper-
ation of a tagged type, then document (in some project-consistent way) this use in the
body of the operation subprogram so that it can be easily found during maintenance.

example
This example (Volan 1994) is intended to show a clean derivation of a square from a rectan-
gle. You do not want to derive Square from Rectangle because Rectangle has semantics that
are inappropriate for Square. (For instance, you can make a rectangle with any arbitrary
height and width, but you should not be able to make a square this way.) Instead, both
Square and Rectangle should be derived from some common abstract type, such as:
Any_Rectangle:
type Figure is abstract tagged

record
...

end record;
type Any_Rectangle is abstract new Figure with private;
-- No Make function for this; it's abstract.
function Area (R: Any_Rectangle) return Float;

-- Overrides abstract Area function inherited from Figure.
-- Computes area as Width(R) * Height(R), which it will
-- invoke via dispatching calls.

function Width (R: Any_Rectangle) return Float is abstract;
function Height (R: Any_Rectangle) return Float is abstract;
type Rectangle is new Any_Rectangle with private;
function Make_Rectangle (Width, Height: Float) return Rectangle;
function Width (R: Rectangle) return Float;
function Height (R: Rectangle) return Float;
-- Area for Rectangle inherited from Any_Rectangle
type Square is new Any_Rectangle with private;
function Make_Square (Side_Length: Float) return Square;
function Side_Length (S: Square) return Float;
function Width (S: Square) return Float;
function Height (S: Square) return Float;
-- Area for Square inherited from Any_Rectangle
...
-- In the body, you could just implement Width and Height for
-- Square as renamings of Side_Length:
function Width (S: Square) return Float renames Side_Length;
function Height (S: Square) return Float renames Side_Length;
function Area (R: Any_Rectangle) return Float is
begin

return Width(Any_Rectangle'Class(R)) * Height(Any_Rectangle'Class(R));

293

Object-Oriented Features

-- Casting [sic, i.e., converting] to the class-wide type causes the function
calls to
-- dynamically dispatch on the 'Tag of R.
-- [sic, i.e., redispatch on the tag of R.]

end Area;

Alternatively, you could just wait until defining types Rectangle and Square to
provide actual Area functions:

type Any_Rectangle is abstract new Figure with private;
-- Inherits abstract Area function from Figure,
-- but that's okay, Any_Rectangle is abstract too.
function Width (R: Any_Rectangle) return Float is abstract;
function Height (R: Any_Rectangle) return Float is abstract;
type Rectangle is new Any_Rectangle with private;
function Make_Rectangle (Width, Height: Float) return Rectangle;
function Width (R: Rectangle) return Float;
function Height (R: Rectangle) return Float;
function Area (R: Rectangle) return Float; -- Overrides Area from Figure
type Square is new Any_Rectangle with private;
function Make_Square (Side_Length: Float) return Square;
function Side_Length (S: Square) return Float;
function Width (S: Square) return Float;
function Height (S: Square) return Float;
function Area (S: Square) return Float; -- Overrides Area from Figure
...
function Area (R: Rectangle) return Float is
begin
return Width(R) * Height(R); -- Non-dispatching calls

end Area;
function Area (S: Square) return Float is
begin
return Side_Length(S) ** 2;

end Area;

rationale
The behavior of a nonabstract operation can be interpreted as the expected behavior for
all members of the class; therefore, the behavior must be a meaningful default for all de-
scendants. If the operation must be tailored based on the descendant abstraction (e.g.,
computing the area of a geometric shape depends on the specific shape), then the operation
should be primitive and possibly abstract. The effect of making the operation abstract is
that it guarantees that each descendant must define its own version of the operation. Thus,
when there is no acceptable basic behavior, an abstract operation is appropriate because a
new version of the operation must be provided with each derivation.

All operations declared in the same package as the tagged type and following the tagged
type's declaration but before the next type declaration are considered its primitive opera-
tions. Therefore, when a new type is derived from the tagged type, it inherits the primitive
operations. If there are any operations that you do not want to be inherited, you must
choose whether to declare them as class-wide operations (see Guideline 9.3.2) or to declare
them in a separate package (e.g., a child package).

Exceptions are part of the semantics of the class. By modifying the exceptions, you are
violating the semantic properties of the class-wide type (see Guideline 9.2.1).

294

Tagged Type Operations

There are (at least) two distinct users of a tagged type and its primitives. The ”ordinary” user
uses the type and its primitives without enhancement. The ”extending” user extends the type
by deriving a type based on the existing (tagged) type. Extending users and maintainers
must determine the ramifications of a possibly incorrect extension. The guidelines here
try to strike a balance between too much documentation (that can then easily get out of
synch with the actual code) and an appropriate level of documentation to enhance the
maintainability of the code.

One of the major maintenance headaches associated with inheritance and dynamic binding
relates to undocumented interdependencies among primitive (dispatching) operations of
tagged types (the equivalent of ”methods” in typical object-oriented terminology). If a
derived type inherits some and overrides other primitive operations, there is the question
of what indirect effects on the inherited primitives are produced. If no redispatching is
used, the primitives may be inherited as ”black boxes.” If redispatching is used internally,
then when inherited, the externally visible behavior of an operation may change, depending
on what other primitives are overridden. Maintenance problems (here, finding and fixing
bugs) occur when someone overrides incorrectly (on purpose or by accident) an operation
used in redispatching. Because this overriding can invalidate the functioning of another
operation defined perhaps several levels of inheritance up from the incorrect operation, it
can be extremely difficult to track down.

In the object-oriented paradigm, redispatching is often used to parameterize abstractions.
In other words, certain primitives are intended to be overridden precisely because they
are redispatching. These primitives may even be declared as abstract, requiring that they
be overridden. Because they are redispatching, they act as ”parameters” for the other
operations. Although in Ada much of this parameterization can be done using generics,
there are cases where the redispatching approach leads to a clearer object-oriented design.
When you document the redispatching connection between the operations that are to be
overridden and the operations that use them, you make the intended use of the type much
clearer.

Hence, any use of redispatching within a primitive should be considered part of the ”inter-
face” of the primitive, at least as far as any inheritor, and requires documentation at the
specification level. The alternative (i.e., not providing such documentation in the specifica-
tion) is to have to delve deep into the code of all the classes in the derivation hierarchy in
order to map out the redispatching calls. Such detective work compromises the black-box
nature of object-oriented class definitions. Note that if you follow Guideline 9.2.1 on pre-
serving the semantics of the class-wide dispatching operations in the extensions of derived
types, you will minimize or avoid the problems discussed here about redispatching.

10.4.2 Class-Wide Operations
guideline
• Consider using a class-wide operation (i.e., an operation with parameter[s] of a class-wide
type) when an operation can be written, compiled, and tested without knowing all the
possible descendants of a given tagged type (Barnes 1996).

• Consider using a class-wide operation when you do not want an operation to be inherited
and/or overridden.

295

Object-Oriented Features

example
The following example is adapted from Barnes (1996) using the geometric objects from the
example of Guideline 9.2.1 and declaring the following functions as primitives in the package
specification:
function Area (O : in Object) return Float;

function Area (C : in Circle) return Float;

function Area (S : in Shape) return Float;

A function for computing the moment of a force about a fulcrum can now be created using
a class-wide type as follows:
function Moment (OC : Object'Class) return Float is
begin

return OC.X_Coord*Area(OC);
end Moment;

Because Moment accepts the class-wide formal parameter of Object'Class, it can be called
with an actual parameter that is any derivation of type Object. Assuming that all deriva-
tions of type object have defined a function for Area, Moment will dispatch to the appro-
priate function when called. For example:
C : Circle;
M : Float;

...

-- Moment will dispatch to the Area function for the Circle type.
M := Moment(C);

rationale
The use of class-wide operations avoids unnecessary duplication of code. Run-time dis-
patching may be used where necessary to invoke appropriate type-specific operations based
on an operand's tag.

See also Guideline 8.4.3 for a discussion of class-wide pointers in an object-oriented pro-
gramming framework registry.

10.4.3 Constructors
Ada does not define a unique syntax for constructors. In Ada a constructor for a type is
defined as an operation that produces as a result a constructed object, i.e., an initialized
instance of the type.

guideline
• Avoid declaring a constructor as a primitive abstract operation.

296

Tagged Type Operations

• Use a primitive abstract operation to declare an initialization function or constructor
only when objects of the inheriting derived types will not require additional parameters
for initialization.

• Consider using access discriminants to provide parameters to default initialization.
• Use constructors for explicit initialization.
• Consider splitting the initialization and construction of an object.
• Consider declaring a constructor operation in a child package.
• Consider declaring a constructor operation to return an access value to the constructed
object (Dewar 1995).

example
The following example illustrates the declaration of a constructor in a child package:
--
package Game is

type Game_Piece is tagged ...
...

end Game;
--
package Game.Constructors is

function Make_Piece return Game_Piece;
...

end Game.Constructors;
--

The following example shows how to split the initialization and construction of an object:
type Vehicle is tagged ...

procedure Initialize (Self : in out Vehicle;
Make : in String);

...

type Car is new Vehicle with ... ;
type Car_Ptr is access all Car'Class;

...

procedure Initialize (Self : in out Car_Ptr;
Make : in String;
Model : in String) is

begin -- Initialize
Initialize (Vehicle (Self.all), Make);
...
-- initialization of Car

end Initialize;

function Create (Make : in String;
Model : in String) return Car_Ptr is

Temp_Ptr : Car_Ptr;
begin -- Create

Temp_Ptr := new Car;
Initialize (Temp_Ptr, Make, Model);
return Temp_Ptr;

end Create;

297

Object-Oriented Features

rationale
Constructor operations for the types in a type hierarchy (assuming tagged types and their
derivatives) usually differ in their parameter profiles. The constructor will typically need
more parameters because of the added components in the descendant types. You run into a
problem when you let constructor operations be inherited because you now have operations
for which there is no meaningful implementation (default or overridden). Effectively, you
violate the class-wide properties (see Guideline 9.2.1) because the root constructor will not
successfully construct a descendant object. Inherited operations cannot add parameters to
their parameter profile, so these are inappropriate to use as constructors.

You cannot initialize a limited type at its declaration, so you may need to use an access
discriminant and rely on default initialization. For a tagged type, however, you should not
assume that any default initialization is sufficient, and you should declare constructors. For
limited types, the constructors must be separate procedures or functions that return an
access to the limited type.

The example shows using a constructor in a child package. By declaring constructor opera-
tions in either a child package or a nested package, you avoid the problems associated with
making them primitive operations. Because they are no longer primitive operations, they
cannot be inherited. By declaring them in a child package (see also Guidelines 4.1.6 and
4.2.2 on using child packages versus nested packages), you gain the ability to change them
without affecting the clients of the parent package (Taft 1995b).

You should put the construction logic and initialization logic in distinct subprograms so
that you are able to call the initialization routine for the parent tagged type.

notes
When you extend a tagged type (regardless whether it is an abstract type), you can choose
to declare as abstract some of the additional operations. Doing so, however, means that the
derived type must also be declared as abstract. If this newly derived type has inherited any
functions that name it as the return type, these inherited functions now also become abstract
(Barnes 1996). If one of these primitive functions served as the constructor function, you
have now violated the first guideline in that the constructor has become a primitive abstract
operation.

10.4.4 Equality
guideline
• When you redefine the ”=” operator on a tagged type, make sure that it has the expected
behavior in extensions of this type and override it if necessary.

example
The following example is adapted from the discussion of equality and inheritance in Barnes
(1996):

298

Tagged Type Operations

--
package Object_Package is

Epsilon : constant Float := 0.01;

type Object is tagged
record

X_Coordinate : Float;
Y_Coordinate : Float;

end record;

function "=" (A, B : Object) return Boolean;

end Object_Package;
--
package body Object_Package is

-- redefine equality to be when two objects are located within a delta
-- of the same point
function "=" (A, B : Object) return Boolean is
begin

return (A.X_Coordinate - B.X_Coordinate) ** 2
+ (A.Y_Coordinate - B.Y_Coordinate) ** 2 < Epsilon**2;

end "=";

end Object_Package;

--
with Object_Package; use Object_Package;
package Circle_Package_1 is

type Circle is new Object with
record

Radius : Float;
end record;

function "=" (A, B : Circle) return Boolean;
end Circle_Package_1;
--
package body Circle_Package_1 is

-- Equality is overridden, otherwise two circles must have exactly
-- equal radii to be considered equal.
function "=" (A, B : Circle) return Boolean is
begin

return (Object(A) = Object(B)) and
(abs (A.Radius - B.Radius) < Epsilon);

end "=";

end Circle_Package_1;
--
with Object_Package; use Object_Package;
package Circle_Package_2 is

type Circle is new Object with
record

Radius : Float;
end record;

-- don't override equality in this package

end Circle_Package_2;
--
with Object_Package;
with Circle_Package_1;
with Circle_Package_2;
with Ada.Text_IO;
procedure Equality_Test is

299

Object-Oriented Features

use type Object_Package.Object;
use type Circle_Package_1.Circle;
use type Circle_Package_2.Circle;
Object_1 : Object_Package.Object;
Object_2 : Object_Package.Object;
Circle_1 : Circle_Package_1.Circle;
Circle_2 : Circle_Package_1.Circle;
Circle_3 : Circle_Package_2.Circle;
Circle_4 : Circle_Package_2.Circle;

begin
Object_1 := (X_Coordinate => 1.000, Y_Coordinate => 2.000);
Object_2 := (X_Coordinate => 1.005, Y_Coordinate => 2.000);
-- These Objects are considered equal. Equality has been redefined to be
-- when two objects are located within a delta of the same point.
if Object_1 = Object_2 then

Ada.Text_IO.Put_Line ("Objects equal.");
else

Ada.Text_IO.Put_Line ("Objects not equal.");
end if;
Circle_1 := (X_Coordinate => 1.000, Y_Coordinate => 2.000, Radius => 5.000);
Circle_2 := (X_Coordinate => 1.005, Y_Coordinate => 2.000, Radius => 5.005);
-- These Circles are considered equal. Equality has been redefined to be
-- when the X-Y locations of the circles and their radii are both within
-- the delta.
if Circle_1 = Circle_2 then

Ada.Text_IO.Put_Line ("Circles equal.");
else

Ada.Text_IO.Put_Line ("Circles not equal.");
end if;
Circle_3 := (X_Coordinate => 1.000, Y_Coordinate => 2.000, Radius => 5.000);
Circle_4 := (X_Coordinate => 1.005, Y_Coordinate => 2.000, Radius => 5.005);
-- These Circles are not considered equal because predefined equality of
-- the extension component Radius will evaluate to False.
if Circle_3 = Circle_4 then

Ada.Text_IO.Put_Line ("Circles equal.");
else

Ada.Text_IO.Put_Line ("Circles not equal.");
end if;

end Equality_Test;

rationale
Equality is applied to all components of a record. When you extend a tagged type and
compare two objects of the derived type for equality, the parent components as well as the
new extension components will be compared. Therefore, when you redefine equality on a
tagged type and define extensions on this type, the parent components are compared using
the redefined equality. The extension components are also compared, using either predefined
equality or some other redefined equality if appropriate. The behavior of inherited equality
differs from the behavior of other inherited operations. When other primitives are inherited,
if you do not override the inherited primitive, it can only operate on the parent components
of the object of the extended type. Equality, on the other hand, generally does the right
thing.

300

Tagged Type Operations

10.4.5 Polymorphism
guideline
• Consider using class-wide programming to provide run-time, dynamic polymorphism
when constructing larger, reusable, extensible frameworks.

• When possible, use class-wide programming rather than variant records.
• Use class-wide programming to provide a consistent interface across the set of types in
the tagged type hierarchy (i.e., class).

• Consider using generics to define a new type in terms of an existing type, either as an
extension or as a container, collection, or composite data structure.

• Avoid using type extensions for parameterized abstractions when generics provide a more
appropriate mechanism.

example
generic

type Element is private;
package Stack is

...
end Stack;

is preferable to:

package Stack is
type Element is tagged null record;
-- Elements to be put on the stack must be of a descendant type
-- of this type.
...

end Stack;

rationale
Both generics and class-wide types allow a single algorithm to be applicable to multiple,
specific types. With generics, you achieve polymorphism across unrelated types because
the type used in the instantiation must match the generic formal part. You specify re-
quired operations using generic formal subprograms, constructing them as needed for a
given instantiation. Generics are ideal for capturing relatively small, reusable algorithms
and programming idioms, for example, sorting algorithms, maps, bags, and iterators. As
generics become large, however, they become unwieldy, and each instantiation may in-
volve additional generated code. Class-wide programming, including class-wide types and
type extension, is more appropriate for building a large subsystem because you avoid the
additional generated code and unwieldy properties of generics.

Class-wide programming enables you to take a set of heterogeneous data structures and
provide a homogeneous-looking interface across the whole set. See also Guideline 9.2.1 on
using tagged types to describe heterogeneous polymorphic data.

In object-oriented programming languages without generic capabilities, it was common to
use inheritance to achieve much the same effect. However, this technique is generally less
clear and more cumbersome to use than the equivalent explicit generic definition. The
nongeneric, inheritance approach can always be recovered using a specific instantiation of
the generic. Also see Guidelines 5.3.2 and 5.4.7 for a discussion of self-referential data
structures.

301

Object-Oriented Features

10.5 Managing Visibility
10.5.1 Derived Tagged Types
guideline
• Consider giving derived tagged types the same visibility to the parent type as other clients
of the parent.

• Define a derived tagged type in a child of the package that defines the base type if the
implementation of the derived type requires greater visibility into the implementation of
the base type than other clients of the base type require.

example
The following example illustrates the need for a derived type to have greater visibility into
the implementation of the base type than other clients of the base type. In this example
of a stack class hierarchy, Push and Pop routines provide a homogeneous interface for
all variations of stacks. However, the implementation of these operations requires greater
visibility into the base types due to the differences in the data elements. This example is
adapted from Barbey, Kempe, and Strohmeier (1994):
generic

type Item_Type is private;
package Generic_Stack is

type Abstract_Stack_Type is abstract tagged limited private;
procedure Push (Stack : in out Abstract_Stack_Type;

Item : in Item_Type) is abstract;
procedure Pop (Stack : in out Abstract_Stack_Type;

Item : out Item_Type) is abstract;
function Size (Stack : Abstract_Stack_Type) return Natural;
Full_Error : exception; -- May be raised by Push
Empty_Error : exception; -- May be raised by Pop

private
type Abstract_Stack_Type is abstract tagged limited

record
Size : Natural := 0;

end record;
end Generic_Stack;
package body Generic_Stack is

function Size (Stack : Abstract_Stack_Type)
return Natural is

begin
return Stack.Size;

end Size;
end Generic_Stack;
--
-- Now, a bounded stack can be derived in a child package as follows:
--
--
generic
package Generic_Stack.Generic_Bounded_Stack is

type Stack_Type (Max : Positive) is
new Abstract_Stack_Type with private;

-- override all abstract subprograms
procedure Push (Stack : in out Stack_Type;

Item : in Item_Type);
procedure Pop (Stack : in out Stack_Type;

Item : out Item_Type);
private

type Table_Type is array (Positive range <>) of Item_Type;

302

Multiple Inheritance

type Stack_Type (Max : Positive) is new Abstract_Stack_Type with
record

Table : Table_Type (1 .. Max);
end record;

end Generic_Stack.Generic_Bounded_Stack;
--
package body Generic_Stack.Generic_Bounded_Stack is

procedure Push (Stack : in out Stack_Type;
Item : in Item_Type) is

begin

-- The new bounded stack needs visibility into the base type
-- in order to update the Size element of the stack type
-- when adding or removing items.

if (Stack.Size = Stack.Max) then
raise Full_Error;

else
Stack.Size := Stack.Size + 1;
Stack.Table(Stack.Size) := Item;

end if;
end Push;

procedure Pop (Stack : in out Stack_Type;
Item : out Item_Type) is

begin
...

end Pop;

end Generic_Stack.Generic_Bounded_Stack;

rationale
If the derived type can be defined without any special visibility of the base type, this
provides for the best possible decoupling of the implementation of the derived type from
changes in the implementation of the base type. On the other hand, the operations of an
extension of a tagged type may need additional information from the base type that is not
commonly needed by other clients.

When the implementation of a derived tagged type requires visibility of the implementation
of the base type, use a child package to define the derived type. Rather than providing
additional public operations for this information, it is better to place the definition of the
derived type in a child package. This gives the derived type the necessary visibility without
risking misuse by other clients.

This situation is likely to arise when you build a data structure with a homogeneous interface
but whose data elements have a heterogeneous implementation. See also Guidelines 8.4.8,
9.2.1, and 9.3.5.

10.6 Multiple Inheritance
Ada provides several mechanisms to support multiple inheritance, where multiple inheri-
tance is a means for incrementally building new abstractions from existing ones, as defined
at the beginning of this chapter. Specifically, Ada supports multiple inheritance module

303

Object-Oriented Features

inclusion (via multiple with/use clauses), multiple inheritance ”is-implemented-using” via
private extensions and record composition, and multiple inheritance mixins via the use of
generics, formal packages, and access discriminants (Taft 1994).

10.6.1 Multiple Inheritance Techniques
guideline
• Consider using type composition for implementation, as opposed to interface, inheritance.
• Consider using a generic to ”mix in” functionality to a derivative of some core abstraction.
• Consider using access discriminants to support ”full” multiple inheritance where an object
must be referenceable as an entity of two or more distinct unrelated abstractions.

example
Both examples that follow are taken directly from Taft (1994). The first shows how to use
multiple inheritance techniques to create an abstract type whose interface inherits from one
type and whose implementation inherits from another type. The second example shows
how to enhance the functionality of a basic abstraction by mixing in new features.

The abstract type Set_Of_Strings provides the interface to inherit:
type Set_Of_Strings is abstract tagged limited private;
type Element_Index is new Natural; -- Index within set.
No_Element : constant Element_Index := 0;
Invalid_Index : exception;
procedure Enter(
-- Enter an element into the set, return the index
Set : in out Set_Of_Strings;
S : String;
Index : out Element_Index) is abstract;

procedure Remove(
-- Remove an element from the set; ignore if not there
Set : in out Set_Of_Strings;
S : String) is abstract;

procedure Combine(
-- Combine Additional_Set into Union_Set
Union_Set : in out Set_Of_Strings;
Additional_Set : Set_Of_Strings) is abstract;

procedure Intersect(
-- Remove all elements of Removal_Set from Intersection_Set
Intersection_Set : in out Set_Of_Strings;
Removal_Set : Set_Of_Strings) is abstract;

function Size(Set : Set_Of_Strings) return Element_Index
is abstract;
-- Return a count of the number of elements in the set

function Index(
-- Return the index of a given element;
-- return No_Element if not there.
Set : Set_Of_Strings;
S : String) return Element_Index is abstract;

function Element(Index : Element_Index) return String is abstract;
-- Return element at given index position
-- raise Invalid_Index if no element there.

private
type Set_Of_Strings is abstract tagged limited ...

The type Hashed_Set derives its interface from Set_of_Strings and its
implementation from an existing (concrete) type Hash_Table:

304

Multiple Inheritance

type Hashed_Set(Table_Size : Positive) is
new Set_Of_Strings with private;

-- Now we give the specs of the operations being implemented
procedure Enter(

-- Enter an element into the set, return the index
Set : in out Hashed_Set;
S : String;
Index : out Element_Index);

procedure Remove(
-- Remove an element from the set; ignore if not there
Set : in out Hashed_Set;
S : String);
-- . . . etc.

private
type Hashed_Set(Table_Size : Positive) is
new Set_Of_Strings with record
Table : Hash_Table(1..Table_Size);

end record;

In the package body, you define the bodies of the operations (i.e., Enter, Remove,Combine,
Size, etc.) using the operations available on Hash_Table. You must also provide any
necessary ”glue” code.

In this second example, the type Basic_Window responds to various events and calls:
type Basic_Window is tagged limited private;
procedure Display(W : Basic_Window);
procedure Mouse_Click(W : in out Basic_Window;

Where : Mouse_Coords);
. . .

You use mixins to add features such as labels, borders, menu bar, etc.:
generic

type Some_Window is new Window with private;
-- take in any descendant of Window

package Label_Mixin is
type Window_With_Label is new Some_Window with private;
-- Jazz it up somehow.

-- Overridden operations:
procedure Display(W : Window_With_Label);
-- New operations:
procedure Set_Label(W : in out Window_With_Label; S : String);
-- Set the label

function Label(W : Window_With_Label) return String;
-- Fetch the label

private
type Window_With_Label is
new Some_Window with record
Label : String_Quark := Null_Quark;
-- An XWindows-Like unique ID for a string

end record;

In the generic body, you implement any overridden operations as well as the new operations.
For example, you could implement the overridden Display operation using some of the
inherited operations:
procedure Display(W : Window_With_Label) is
begin

Display(Some_Window(W));
-- First display the window normally,

305

Object-Oriented Features

-- by passing the buck to the parent type.
if W.Label /= Null_Quark then
-- Now display the label if it is not null

Display_On_Screen(XCoord(W), YCoord(W)-5, Value(W.Label));
-- Use two inherited functions on Basic_Window
-- to get the coordinates where to display the label.

end if;
end Display;

Assuming you have defined several generics with these additional features, to create the
desired window, you use a combination of generic instantiations and private type extension,
as shown in the following code:

type My_Window is new Basic_Window with private;
. . .

private
package Add_Label is new Label_Mixin(Basic_Window);
package Add_Border is

new Border_Mixin(Add_Label.Window_With_Label);
package Add_Menu_Bar is

new Menu_Bar_Mixin(Add_Border.Window_With_Border);
type My_Window is

new Add_Menu_Bar.Window_With_Menu_Bar with null record;
-- Final window is a null extension of Window_With_Menu_Bar.
-- We could instead make a record extension and
-- add components for My_Window over and above those
-- needed by the mixins.

The following example shows ”full” multiple inheritance.

Assume previous definition of packages for Savings_Account and Checking_Account. The
following example shows the definition of an interest-bearing checking account (NOW ac-
count):
with Savings_Account;
with Checking_Account;
package NOW_Account is

type Object is tagged limited private;

type Savings (Self : access Object'Class) is
new Savings_Account.Object with null record;

-- These need to be overridden to call through to "Self"
procedure Deposit (Into_Account : in out Savings; ...);
procedure Withdraw (...);
procedure Earn_Interest (...);
function Interest (...) return Float;
function Balance (...) return Float;
type Checking (Self : access Object'Class) is

new Checking_Account.Object with null record;

procedure Deposit (Into_Account : in out Checking; ...);
...
function Balance (...) return Float;

-- These operations will call-through to Savings_Account or
-- Checking_Account operations. "Inherits" in this way all savings and
-- checking operations

procedure Deposit (Into_Account : in out Object; ...);
...

306

Multiple Inheritance

procedure Earn_Interest (...);
...
function Balance (...) return Float;

private

-- Could alternatively have Object be derived from either
-- Savings_Account.Object or Checking_Account.Object
type Object is tagged

record
As_Savings : Savings (Object'Access);
As_Checking : Checking (Object'Access);

end record;

end NOW_Account;

Another possibility is that the savings and checking accounts are both implemented
based on a common Account abstraction, resulting in inheriting a Balance state twice for
NOW_Account.Object. To resolve this ambiguity, you need to use an abstract type hierar-
chy for the multiple inheritance of interface and separate mixins for the multiple inheritance
of implementation.

rationale
In other languages such as Eiffel and C++, multiple inheritance serves many purposes. In
Eiffel, for instance, you must use inheritance both for module inclusion and for inheritance
itself (Taft 1994). Ada provides context clauses for module inclusion and child libraries
for finer modularization control. Ada does not provide a separate syntax for multiple
inheritance. Rather, it provides a set of building blocks in type extension and composition
that allow you to mix in additional behaviors.

A library of mixins allows the client to mix and match in order to develop an implementation.
Also see Guideline 8.3.8 about implementing mixins.

You should not use multiple inheritance to derive an abstraction that is essentially unrelated
to its parent(s). Thus, you should not try to derive a menu abstraction by inheriting from a
command line type and a window type. However, if you have a basic abstraction such as a
window, you can use multiple inheritance mixins to create a more sophisticated abstraction,
where a mixin is the package containing the type(s) and operations that will extend the
parent abstraction.

Use self-referential data structures to implement types with ”full” multiple inheritance (”mul-
tiple polymorphism”).

A common mistake is to use multiple inheritance for parts-of relations. When a type is
composed of several others types, you should use heterogeneous data structuring techniques,
discussed in Guideline 5.4.2.

307

Object-Oriented Features

10.7 Summary
10.7.1 tagged type hierarchies
• Consider using type extension when designing an is-a (generalization/specialization) hi-
erarchy.

• Use tagged types to preserve a common interface across differing implementations (Taft
1995a).

• When defining a tagged type in a package, consider including a definition of a general
access type to the corresponding class-wide type.

• In general, define only one tagged type per package.
• The implementation of the dispatching operations of each type in a derivation class
rooted in a tagged type T should conform to the expected semantics of the corresponding
dispatching operations of the class-wide type T'Class.

• Consider using a controlled type whenever a type allocates resources that must be deal-
located or otherwise ”cleaned up” on destruction or overwriting.

• Use a derivation from a controlled type in preference to providing an explicit ”cleanup”
operation that must be called by clients of the type.

• When overriding the adjustment and finalization procedures derived from controlled
types, define the finalization procedure to undo the effects of the adjustment procedure.

• Derived type initialization procedures should call the initialization procedure of their
parent as part of their type-specific initialization.

• Derived type finalization procedures should call the finalization procedure of their parent
as part of their type-specific finalization.

• Consider deriving a data structure's components rather than the enclosing data structure
from a controlled type.

• Consider using abstract types and operations in creating classification schemes, for ex-
ample, a taxonomy, in which only the leaf objects will be meaningful in the application.

• Consider declaring root types and internal nodes in a type tree as abstract.
• Consider using abstract types for generic formal derived types.
• Consider using abstract types to develop different implementations of a single abstraction.

10.7.2 tagged type operations
• Consider declaring a primitive abstract operation based on the absence of a meaningful
”default” behavior.

• Consider declaring a primitive nonabstract operation based on the presence of a mean-
ingful ”default” behavior.

• When overriding an operation, the overriding subprogram should not raise exceptions
that are not known to the users of the overridden subprogram.

• If redispatching is used in the implementation of the operations of a type, with the specific
intent that some of the redispatched-to operations be overridden by specializations for
the derived types, then document this intent clearly in the specification as part of the
”interface” of a parent type with its derived types.

• When redispatching is used (for any reason) in the implementation of a primitive oper-
ation of a tagged type, then document (in some project-consistent way) this use in the
body of the operation subprogram so that it can be easily found during maintenance.

308

Summary

• Consider using a class-wide operation (i.e., an operation with parameter[s] of a class-wide
type) when an operation can be written, compiled, and tested without knowing all the
possible descendants of a given tagged type (Barnes 1996).

• Consider using a class-wide operation when you do not want an operation to be inherited
and/or overridden.

• Avoid declaring a constructor as a primitive abstract operation.
• Use a primitive abstract operation to declare an initialization function or constructor
only when objects of the inheriting derived types will not require additional parameters
for initialization.

• Consider using access discriminants to provide parameters to default initialization.
• Use constructors for explicit initialization.
• Consider splitting the initialization and construction of an object.
• Consider declaring a constructor operation in a child package.
• Consider declaring a constructor operation to return an access value to the constructed
object (Dewar 1995).

• When you redefine the ”=” operator on a tagged type, make sure that it has the expected
behavior in extensions of this type and override it if necessary.

• Consider using class-wide programming to provide run-time, dynamic polymorphism
when constructing larger, reusable, extensible frameworks.

• When possible, use class-wide programming rather than variant records.
• Use class-wide programming to provide a consistent interface across the set of types in
the tagged type hierarchy (i.e., class).

• Consider using generics to define a new type in terms of an existing type, either as an
extension or as a container, collection, or composite data structure.

• Avoid using type extensions for parameterized abstractions when generics provide a more
appropriate mechanism.

10.7.3 managing visibility
• Consider giving derived tagged types the same visibility to the parent type as other clients
of the parent.

• Define a derived tagged type in a child of the package that defines the base type if the
implementation of the derived type requires greater visibility into the implementation of
the base type than other clients of the base type require.

10.7.4 multiple inheritance
• Consider using type composition for implementation, as opposed to interface, inheritance.
• Consider using a generic to ”mix in” functionality to a derivative of some core abstraction.
• Consider using access discriminants to support ”full” multiple inheritance where an object
must be referenceable as an entity of two or more distinct unrelated abstractions.

309

11 Improving Performance

11.1 Introduction
In many ways, performance is at odds with maintainability and portability. To achieve im-
proved speed or memory usage, the most clear algorithm sometimes gives way to confusing
code. To exploit special purpose hardware or operating system services, non-portable im-
plementation dependencies are introduced. When concerned about performance, you must
decide how well each algorithm meets its performance and maintainability goals. Use the
guidelines in this chapter with care; they may be hazardous to your software.

The best way to build a system that satisfies its performance requirements is through good
design. You should not assume that speeding up your code will result in a visible increase in
system execution. In most applications, the overall throughput of the system is not defined
by the execution speed of the code but by the interaction between concurrent processes and
the response time of the system peripherals.

Most of the guidelines in this chapter read ”... when measured performance indicates.” ”In-
dicates” means that you have determined that the benefit in increased performance to your
application in your environment outweighs the negative side effects on understandability,
maintainability, and portability of the resulting code. Many of the guideline examples show
the alternatives that you will need to measure in order to determine if the guideline is
indicated.

11.2 Performance Issues
Performance has at least four aspects: execution speed, code size, compilation speed, and
linking speed. Although all four are important, most people think of execution speed when
performance is mentioned, and most of the guidelines in this chapter focus on execution
speed.

Performance is influenced by many factors, including the compilation software, hardware,
system load, and coding style. While only coding style is typically under the control of
the programmer, the other factors have so much influence that it is impossible to make flat
statements such as ”case statements are more efficient than if-then-else structures.” When
performance is critical, you cannot assume that a coding style that proves more efficient on
one system will also be more efficient on another. Decisions made for the sake of performance
must be made on the basis of testing the alternatives on the actual system on which the
application will be fielded.

311

Improving Performance

11.3 Performance Measurement
While most well-known tools for measuring performance are stand-alone programs that
concentrate on execution speed, there is a comprehensive tool that covers all four aspects
of performance. The Ada Compiler Evaluation System (ACES) is the result of merging
two earlier products: the United States Department of Defense's Ada Compiler Evaluation
Capability and the United Kingdom Ministry of Defence's Ada Evaluation System. It
offers a comprehensive set of nearly 2,000 performance tests along with automated setup,
test management, and analysis software. This system reports (and statistically analyzes)
compilation time, linking time, execution time, and code size. The analysis tools make
comparisons among multiple compilation-execution systems and also provide comparisons
of the run-time performance of tests using different coding styles to achieve similar purposes.

Performance Issues Working Group (PIWG) suite. The Quick-Look facility is advertised as
being easy to download, install, and execute in less than a day, while providing information
that is as useful as that generated by the PIWG suite. In addition, sw-eng.falls-church.va.us,
directory /public/AdaIC/testing/aces. For World Wide Web access, use the following uni-
form resource locator (URL): 1.

While measuring performance may seem to be a relatively straightforward matter, there
are significant issues that must be addressed by any person or toolset planning to do such
measurement. For detailed information, see the following sources: ACES (1995a, 1995b,
1995c); Clapp, Mudge, and Roy (1990); Goforth, Collard, and Marquardt (1990); Knight
(1990); Newport (1995); and Weidermann (1990).

11.4 Program Structure
11.4.1 Blocks
guideline
• Use blocks (see Guideline 5.6.9) to introduce late initialization when measured perfor-
mance indicates.

example
...
Initial : Matrix;

begin -- Find_Solution

Initialize_Solution_Matrix:
for Row in Initial'Range(1) loop

for Col in Initial'Range(2) loop
Initial (Row, Col) := Get_Value (Row, Col);

end loop;
end loop Initialize_Solution_Matrix;

Converge_To_The_Solution:
declare

1 http://sw-eng.falls-church.va.us/AdaIC/testing/aces/

312

http://sw-eng.falls-church.va.us/AdaIC/testing/aces/

Data Structures

Solution : Matrix := Identity;
Min_Iterations : constant Natural := ...;

begin -- Converge_To_The_Solution
for Iterations in 1 .. Min_Iterations loop

Converge (Solution, Initial);
end loop;

end Converge_To_The_Solution;

...
end Find_Solution;

rationale
Late initialization allows a compiler more choices in register usage optimization. Depending
on the circumstance, this may introduce a significant performance improvement.

Some compilers incur a performance penalty when declarative blocks are introduced. Care-
ful analysis and timing tests by the programmer may identify those declarative blocks that
should be removed.

notes
It is difficult to accurately predict through code inspections which declarative blocks improve
performance and which degrade performance. However, with these general guidelines and
a familiarity with the particular implementation, performance can be improved.

11.5 Data Structures
11.5.1 Dynamic Arrays
guideline
• Use constrained arrays when measured performance indicates.

rationale
If array bounds are not known until run-time, then calculations of these bounds may affect
run-time performance. Using named constants or static expressions as array bounds may
provide better performance than using variables or nonstatic expressions. Thus, if the values
of Lower and Upper are not determined until run-time, then:

... is array (Lower .. Upper) of ...

may cause address and offset calculations to be delayed until run-time, introducing a perfor-
mance penalty. See NASA (1992) for a detailed discussion of the tradeoffs and alternatives.

313

Improving Performance

11.5.2 Zero-Based Arrays
guideline
• Use zero-based indexing for arrays when measured performance indicates.

rationale
For some compilers, offset calculations for an array whose lower bound is 0 (either the
integer zero or the first value of an enumeration type) are simplified. For other compilers,
optimization is more likely if the lower bound is 1.

11.5.3 Unconstrained Records
guideline
• Use fixed-size components for records when measured performance indicates.

example
subtype Line_Range is Integer range 0 .. Max_Lines;
subtype Length_Range is Integer range 0 .. Max_Length;

-- Note that Max_Lines and Max_Length need to be static
type Paragraph_Body is array (Line_Range range <>, Length_Range range <>) of
Character;

type Paragraph (Lines : Line_Range := 0; Line_Length : Length_Range := 0) is
record

Text : Paragraph_Body (1 .. Lines, 1 .. Line_Length);
end record;

rationale
Determine the size and speed impact of unconstrained records having components depending
on discriminants. Some compilers will allocate the maximum possible size to each object of
the type; others will use pointers to the dependent components, incurring a possible heap
performance penalty. Consider the possibility of using fixed-size components.

11.5.4 Records and Arrays
guideline
• Define arrays of records as parallel arrays when measured performance indicates.

example
-- Array of records
Process (Student (Index).Name, Student (Index).Grade);
-- Record of arrays
Process (Student.Name (Index), Student.Grade (Index));
-- Parallel arrays
Process (Name (Index), Grade (Index));

314

Algorithms

rationale
Determine the impact of structuring data as arrays of records, records containing arrays, or
parallel arrays. Some implementations of Ada will show significant performance differences
among these examples.

11.5.5 Record and Array Aggregates
guideline
• Use a sequence of assignments for an aggregation when measured performance indicates.

rationale
Determine the impact of using an aggregate versus a sequence of assignments. Using an
aggregate generally requires the use of a temporary variable. If the aggregate is ”static” (i.e.,
its size and components are known at compile- or link-time, allowing link-time allocation
and initialization), then it will generally be more efficient than a sequence of assignments.
If the aggregate is ”dynamic,” then a series of assignments may be more efficient because no
temporary variable is needed.

See Guideline 5.6.10 for a discussion of aggregates from the point of view of readability and
maintainability.

See Guideline 10.6.1 for a discussion of extension aggregates.

11.6 Algorithms
11.6.1 Mod and rem Operators
guideline
• Use incremental schemes instead of mod and rem when measured performance indicates.

example
-- Using mod
for I in 0 .. N loop

Update (Arr (I mod Modulus));
end loop;

-- Avoiding mod
J := 0;
for I in 0 .. N loop

Update (Arr (J));
J := J + 1;
if J = Modulus then

J := 0;
end if;

end loop;

315

Improving Performance

rationale
Determine the impact of using the mod and rem operators. One of the above styles may
be significantly more efficient than the other.

11.6.2 Short-Circuit Operators
guideline
• Use the short-circuit control form when measured performance indicates.

example
-- Nested "if"
if Last >= Target_Length then

if Buffer (1 .. Target_Length) = Target then
...

end if;
end if;

-- "and then"
if Last >= Target_Length and then Buffer (1 .. Target_Length) = Target then

...
end if;

rationale
Determine the impact of using nested if statements versus using the and then or or else
operator. One of the above may be significantly more efficient than the other.

11.6.3 Case Statement Versus elsif
guideline
• Use the case statement when measured performance indicates.

example
subtype Small_Int is Integer range 1 .. 5;
Switch : Small_Int;
...
-- Case statement
case Switch is

when 1 => ...
when 2 => ...
when 3 => ...
when 4 => ...
when 5 => ...

end case;

-- "elsif construct"
if Switch = 1 then

...
elsif Switch = 2 then

...
elsif Switch = 3 then

...

316

Algorithms

elsif Switch = 4 then
...

elsif Switch = 5 then
...

end if;

rationale
Determine the impact of using case statements versus the elsif construct. If the case state-
ment is implemented using a small jump table, then it may be significantly more efficient
than the if .. then .. elsif construct.

See also Guideline 8.4.6 for a discussion of the table-driven programming alternative.

11.6.4 Checking for Constraint Errors
guideline
• Use hard-coded constraint checking when measured performance indicates.

example
subtype Small_Int is Positive range Lower .. Upper;
Var : Small_Int;
...

-- Using exception handler
Double:

begin
Var := 2 * Var;

exception
when Constraint_Error =>

...
end Double;

-- Using hard-coded check
if Var > Upper / 2 then

...
else

Var := 2 * Var;
end if;

rationale
Determine the impact of using exception handlers to detect constraint errors. If the excep-
tion handling mechanism is slow, then hard-coded checking may be more efficient.

11.6.5 Order of Array Processing
guideline
• Use column-first processing of two-dimensional arrays when measured performance indi-
cates.

317

Improving Performance

example
type Table_Type is array (Row_Min .. Row_Max, Col_Min .. Col_Max) of ...
Table : Table_Type;
...
-- Row-order processing
for Row in Row_Min .. Row_Max loop

for Col in Col_Min .. Col_Max loop
-- Process Table (Row, Col)

end loop;
end loop;
-- Column-order processing
for Col in Col_Min .. Col_Max loop

for Row in Row_Min .. Row_Max loop
-- Process Table (Row, Col)

end loop;
end loop;

rationale
Determine the impact of processing two-dimensional arrays in row-major order versus
column-major order. While most Ada compilers are likely to use row-major order, it is
not a requirement. In the presence of good optimization, there may be no significant differ-
ence in the above examples. Using static array bounds is also likely to be significant here.
See Guidelines 10.4.1 and 10.4.2.

11.6.6 Assigning Alternatives
guideline
• Use overwriting for conditional assignment when measured performance indicates.

example
-- Using "if .. else"
if Condition then

Var := One_Value;
else

Var := Other_Value;
end if;
-- Using overwriting
Var := Other_Value;
if Condition then

Var := One_Value;
end if;

rationale
Determine the impact of styles of assigning alternative values. The examples illustrate two
common methods of doing this; for many systems, the performance difference is significant.

11.6.7 Packed Boolean Array Shifts
guideline
• When measured performance indicates, perform packed Boolean array shift operations
by using slice assignments rather than repeated bit-wise assignment.

318

Algorithms

example
subtype Word_Range is Integer range 0 .. 15;
type Flag_Word is array (Word_Range) of Boolean;
pragma Pack (Flag_Word);
Word : Flag_Word;
...

-- Loop to shift by one bit
for Index in 0 .. 14 loop

Word (Index) := Word (Index + 1);
end loop;
Word (15) := False;

-- Use slice assignment to shift by one bit
Word (0 .. 14) := Word (1 .. 15);
Word (15) := False;

rationale
Determine the impact of slice manipulation when shifting packed Boolean arrays. For Ada
83 implementations using packed Boolean arrays, shift operations may be much faster when
slice assignments are used as opposed to for loop moving one component at a time. For
Ada 95 implementations, consider using modular types instead (see Guideline 10.6.3).

11.6.8 Subprogram Dispatching
guideline
• Use static subprogram dispatching when measured performance indicates.

example
The term ”static dispatching” in this example refers to the use of if/elsif sequences to ex-
plicitly determine which subprograms to call based on certain conditions:

-- (1) Dispatching where tag is not known at compile time
-- (See ACES V2.0 test "a9_ob_class_wide_dynamic_01")
-- Object_Type is a tagged type
-- The_Pointer designates Object_Type'Class;
-- Subclass1_Pointer designates Subclass1 (derived from Object_Type)
-- Subclass2_Pointer designates Subclass2 (derived from Subclass1)
-- Subclass3_Pointer designates Subclass3 (derived from Subclass2)
Random_Value := Simple_Random; -- Call to a random number generator
if Random_Value < 1.0/3.0 then

The_Pointer := Subclass1_Pointer;
elsif Random_Value > 2.0/3.0 then

The_Pointer := Subclass2_Pointer;
else

The_Pointer := Subclass3_Pointer;
end if;
Process (The_Pointer.all); -- Tag is unknown
-- (2) Tag is determinable at compile time (static dispatching)
-- (See ACES V2.0, test "a9_ob_class_wide_static_01")
-- Object_Type is a tagged type
-- The_Pointer designates Object_Type'Class;
-- Subclass1_Pointer designates Subclass1 (derived from Object_Type)
-- Subclass2_Pointer designates Subclass2 (derived from Subclass1)
-- Subclass3_Pointer designates Subclass3 (derived from Subclass2)
Random_Value := Simple_Random; -- Call to a random number generator

319

Improving Performance

if Random_Value < 1.0/3.0 then
Process (Subclass1_Pointer.all);

elsif Random_Value > 2.0/3.0 then
Process (Subclass2_Pointer.all);

else
Process (Subclass3_Pointer.all);

end if;
-- (3) No tagged types are involved (no dispatching)
-- (See ACES V2.0, test "ap_ob_class_wide_01")
-- Object_type is a discriminated type with variants; possible
-- discriminant values are Subclass1, Subclass2, and Subclass3
-- All the pointers designate values of Object_Type
-- Subclass1_Pointer := new Object_Type (Subclass1);
-- Subclass2_Pointer := new Object_Type (Subclass2);
-- Subclass3_Pointer := new Object_Type (Subclass3);
-- There is only one "Process" procedure (operating on Object_Type)
Random_Value := Simple_Random; -- Call to a random number generator
if Random_Value < 1.0/3.0 then

Process (Subclass1_Pointer.all);
elsif Random_Value > 2.0/3.0 then

Process (Subclass2_Pointer.all);
else

Process (Subclass3_Pointer.all);
end if;

rationale
Determine the impact of dynamic and static subprogram dispatching. The compiler may
generate much more efficient code for one form of dispatching than the other.

notes
Dynamic dispatching will almost certainly be more efficient than an explicit if . . . elsif
sequence. However, you should be aware of any optimizing decisions made by a compiler
that might affect this situation.

11.7 Types
11.7.1 Aggregates for Type Extensions
guideline
• Use only simple aggregates when measured performance indicates.

example
type Parent is tagged

record
C1 : Float;
C2 : Float;

end record;

type Extension is new Parent with
record

C3 : Float;

320

Types

C4 : Float;
end record;

Parent_Var : Parent := (C1 => Float_Var1, C2 => Float_Var2);
Exten_Var : Extension;
...
-- Simple aggregate
-- (See ACES V2.0, test "a9_ob_simp_aggregate_02")
Exten_Var := (C1 => Float_Var1, C2 => Float_Var2,

C3 => Float_Var3, C4 => Float_Var4);
-- Extension aggregate
-- (See ACES V2.0, test "a9_ob_ext_aggregate_02")
Exten_Var := (Parent_Var with C3 => Float_Var3, C4 => Float_Var4);

rationale
Determine the impact of using extension aggregates. There may be a significant performance
difference between evaluation of simple aggregates and evaluation of extension aggregates.

11.7.2 Protected Types
guideline
• For mutual exclusion, when measured performance indicates, use protected types as an
alternative to tasking rendezvous.

• To implement an interrupt handler, when performance measurement indicates, use a
protected procedure.

example
-- (1) Using protected objects
-- (See ACES V2.0, test "a9_pt_prot_access_02")
protected Object is

function Read return Float;
procedure Write (Value : in Float);

private
Data : Float;

end Object;
protected body Object is

function Read return Float is
begin

return Data;
end Read;
procedure Write (Value : in Float) is
begin

Data := Value;
end Write;

end Object;
task type Modify is
end Modify;
type Mod_Bunch is array (1 .. 5) of Modify;
task body Modify is

...
begin -- Modify

for I in 1 .. 200 loop
The_Value := Object.Read;
Object.Write (The_Value - 0.125);
if The_Value < -1.0E7 then

The_Value := 1.0;

321

Improving Performance

end if;
end loop;

end Modify;
...
-- Block statement to be timed
declare

Contending_Tasks : array (1 .. 5) of Modify;
begin

null; -- 5 tasks contend for access to protected data
end;

--
-- (2) Using monitor task
-- (See ACES V2.0, test "tk_rz_entry_access_02")
Task Object is

entry Write (Value : in Float);
entry Read (Value : out Float);

end Object;
task body Object is

Data : Float;
begin -- Object

loop
select

accept Write (Value : in Float) do
Data := Value;

end Write;
or

accept Read (Value : out Float) do
Value := Data;

end Read;
or

terminate;
end select;

end loop;
end Object;
-- Task type Modify declared as above
-- Block statement to be timed as above

rationale
Protected objects are meant to be much faster than tasks used for the same purpose (see
Guideline 6.1.1). Determine the impact of using protected objects to provide access safely
to encapsulated data in a concurrent program.

11.7.3 Bit Operations on Modular Types
guideline
• Use modular types rather than packed Boolean arrays when measured performance indi-
cates.

example
-- (1) Packed Boolean arrays
-- (See ACES V2.0, test "dr_ba_bool_arrays_11")

type Set is array (0 .. 15) of Boolean;
pragma Pack (Set);

S1 : Set;

322

Types

S2 : Set;
Empty : Set := (Set'Range => False);
Result : Boolean;

...

-- Is S1 a subset of S2?
Result := ((S1 and not S2) = Empty);

-- (2) Modular types
-- (See ACES V2.0, test "a9_ms_modular_oper_02")

type Set is mod 16;

S1 : Set;
S2 : Set;
Empty : Set := 0;
Result : Boolean;

...

-- Is S1 a subset of S2?
Result := ((S1 and not S2) = Empty);

rationale
Determine the impact of performing bit-wise operations on modular types. The performance
of these operations may be significantly different from similar operations on packed Boolean
arrays. See also Guideline 10.5.7.

11.7.4 Bounded Strings
guideline
• Use the predefined bounded strings when predictable performance is an issue and mea-
sured performance indicates.

rationale
The unbounded strings may be allocated on the heap. If bounded strings are not allocated
on the heap, then they may provide better performance. Determine the impact of using the
string type declared in instantiations of Ada.Strings.Bounded.Generic_Bounded_Length
versus the type declared in Ada.Strings.Unbounded.

The predefined Ada 95 language environment defines packages that support both bounded
and unbounded strings. Using bounded strings may avoid the unpredictable duration of
delays associated with using heap storage.

11.7.5 String Handling Subprograms
guideline
• Use the procedural form of the string handling subprograms when measured performance
indicates.

323

Improving Performance

rationale
Determine the relative performance cost of functions and procedures having the same name
and functionality in Ada.Strings.Fixed, Ada.Strings.Bounded, Ada.Strings.Unbounded and
the corresponding child packages whose names include Wide.

While functional notation typically leads to clearer code, it may cause the compiler to
generate additional copying operations.

11.7.6 Constraint Checking
guideline
• Use strong typing with carefully selected constraints to reduce run-time constraint check-
ing when measured performance indicates.

example
In this example, two potential constraint checks are eliminated. If the function
Get_Response returns String, then the initialization of the variable Input would require
constraint checking. If the variable Last is type Positive, then the assignment inside the
loop would require constraint checking:

...
subtype Name_Index is Positive range 1 .. 32;
subtype Name is String (Name_Index);
...
function Get_Response return Name is separate;
...

begin
...
Find_Last_Period:

declare
-- No Constraint Checking needed for initialization
Input : constant Name := Get_Response;
Last_Period : Name_Index := 1;

begin -- Find_Last_Period
for I in Input'Range loop

if Input(I) = '.' then
-- No Constraint Checking needed in this `tight' loop
Last_Period := I;

end if;
end loop;
...

end Find_Last_Period;

rationale
Because run-time constraint checking is associated with slow performance, it is not intuitive
that the addition of constrained subtypes could actually improve performance. However,
the need for constraint checking appears in many places regardless of the use of constrained
subtypes. Even assignments to variables that use the predefined subtypes may need con-
straint checks. By consistently using constrained subtypes, many of the unnecessary run-
time checking can be eliminated. Instead, the checking is usually moved to less frequently

324

Pragmas

executed code involved in system input. In the example, the function Get_Response may
need to check the length of a user-supplied string and raise an exception.

Some compilers can do additional optimizations based on the information provided by con-
strained subtypes. For example, although an unconstrained array does not have a fixed size,
it has a maximum size that can be determined from the range of its index. Performance
can be improved by limiting this maximum size to a ”reasonable” number. Refer to the
discussion on unconstrained arrays found in NASA (1992).

11.7.7 Real-Time System Annex
guideline
• For cases where both rendezvous and protected types are inefficient, consider the use of
the Real-Time Systems Annex (Ada Reference Manual 1995, Annex D).

rationale
The packages Ada.Synchronous_Task_Control and Ada.Asynchronous_Task_Control
have been defined to provide an alternative to tasking and protected types for use in appli-
cations where a minimal run-time is desired (Ada Reference Manual 1995, Annex D).

11.8 Pragmas
11.8.1 Pragma Inline
guideline
• When measured performance indicates, use pragma Inline when calling overhead is a
significant portion of the routine's execution time.

example
procedure Assign (Variable : in out Integer;

Value : in Integer);
pragma Inline (Assign);
...
procedure Assign (Variable : in out Integer;

Value : in Integer) is
begin

Variable := Value;
end Assign;

rationale
If calling overhead is a significant portion of a subprogram's execution time, then using
pragma Inline may reduce execution time.

Procedure and function invocations include overhead that is unnecessary when the code
involved is very small. These small routines are usually written to maintain the imple-
mentation hiding characteristics of a package. They may also simply pass their parameters

325

Improving Performance

unchanged to another routine. When one of these routines appears in some code that needs
to run faster, either the implementation-hiding principle needs to be violated or a pragma
Inline can be introduced.

The use of pragma Inline does have its disadvantages. It can create compilation dependen-
cies on the body; that is, when the specification uses a pragma Inline, both the specification
and corresponding body may need to be compiled before the specification can be used.
As updates are made to the code, a routine may become more complex (larger) and the
continued use of a pragma Inline may no longer be justified.

exceptions
Although it is rare, inlining code may increase code size, which can lead to slower per-
formance caused by additional paging. A pragma Inline may actually thwart a compiler's
attempt to use some other optimization technique, such as register optimization.

When a compiler is already doing a good job of selecting routines to be inlined, the pragma
may accomplish little, if any, improvement in execution speed.

11.8.2 Pragma Restrictions
guideline
• Use pragma Restrictions to express the user's intent to abide by certain restrictions.

rationale
This may facilitate the construction of simpler run-time environments (Ada Reference Man-
ual 1995, §§13.12, D.7, and H.4).

11.8.3 Pragma Preelaborate
guideline
• Use pragma Preelaborate where allowed.

rationale
This may reduce memory write operations after load time (Ada Reference Manual 1995,
§§10.2.1 and C.4).

11.8.4 Pragma Pure
guideline
• Use pragma Pure where allowed.

326

Summary

rationale
This may permit the compiler to omit calls on library-level subprograms of the library unit
if the results are not needed after the call (Ada Reference Manual 1995, §10.2.1).

11.8.5 Pragma Discard_Names
guideline
• Use pragma Discard_Names when the names are not needed by the application and data
space is at a premium.

rationale
This may reduce the memory needed to store names of Ada entities, where no operation
uses those names (Ada Reference Manual 1995, §C.5).

11.8.6 Pragma Suppress
guideline
• Use pragma Suppress where necessary to achieve performance requirements.

rationale
See Guideline 5.9.5.

11.8.7 Pragma Reviewable
guideline
• Use pragma Reviewable to aid in the analysis of the generated code.

rationale
See the Ada Reference Manual (1995, Annex H).

11.9 Summary
• Use the guidelines in this chapter with care; they may be hazardous to your software.

program structure
• Use blocks to introduce late initialization when measured performance indicates .

327

Improving Performance

11.9.1 data structures
• Use constrained arrays when measured performance indicates.
• Use zero-based indexing for arrays when measured performance indicates.
• Use fixed-size components for records when measured performance indicates.
• Define arrays of records as parallel arrays when measured performance indicates.
• Use a sequence of assignments for an aggregation when measured performance indicates.

11.9.2 algorithms
• Use incremental schemes instead of mod and rem when measured performance indicates.
• Use the short-circuit control form when measured performance indicates.
• Use the case statement when measured performance indicates.
• Use hard-coded constraint checking when measured performance indicates.
• Use column-first processing of two-dimensional arrays when measured performance indi-
cates.

• Use overwriting for conditional assignment when measured performance indicates.
• When measured performance indicates, perform packed Boolean array shift operations
by using slice assignments rather than repeated bit-wise assignment.

• Use static subprogram dispatching when measured performance indicates.<

11.9.3 types
• Use only simple aggregates when measured performance indicates.
• For mutual exclusion, when measured performance indicates, use protected types as an
alternative to tasking rendezvous.

• To implement an interrupt handler, when measured performance indicates, use a pro-
tected procedure.

• Use modular types rather than packed Boolean arrays when measured performance indi-
cates.

• Use the predefined bounded strings when predictable performance is an issue and mea-
sured performance indicates.

• Use the procedural form of the string handling subprograms when measured performance
indicates.

• Use strong typing with carefully selected constraints to reduce run-time constraint check-
ing when measured performance indicates.

• For cases where both rendezvous and protected types are inefficient, consider the use of
the Real-Time Systems Annex (Ada Reference Manual 1995, Annex D).

11.9.4 pragmas
• When measured performance indicates, use pragma Inline when calling overhead is a
significant portion of the routine's execution time.

• Use pragma Restrictions to express the user's intent to abide by certain restrictions.
• Use pragma Preelaborate where allowed.
• Use pragma Pure where allowed.
• Use pragma Discard_Names when the names are not needed by the application and data
space is at a premium.

328

Summary

• Use pragma Suppress where necessary to achieve performance requirements.
• Use pragma Reviewable to aid in the analysis of the generated code.

329

12 Portable Dining Philosophers
Example

This chapter presents an elaborate implementation of Edsger Dijkstra's famous Dining
Philosophers1; a classical demonstration of deadlock2 problems in concurrent programming.
This example demonstrates the portability of Ada packages and tasking and illustrates
many of the Ada 95 quality and style guidelines. Since many of the guidelines leave the
program writer to decide what is best, there is no single best or correct example of how to
use Ada. Instead, you will find several styles that differ from your own that may deserve
consideration.
--::::::::::
--random_generic.ads
--::::::::::
generic

type Result_Subtype is (<>);
package Random_Generic is

-- Simple integer pseudo-random number generator package.
-- Michael B. Feldman, The George Washington University,
-- June 1995.

function Random_Value return Result_Subtype;

end Random_Generic;
--::::::::::
--screen.ads
--::::::::::
package Screen is

-- simple ANSI terminal emulator
-- Michael Feldman, The George Washington University
-- July, 1995

ScreenHeight : constant Integer := 24;
ScreenWidth : constant Integer := 80;

subtype Height is Integer range 1 .. ScreenHeight;
subtype Width is Integer range 1 .. ScreenWidth;

type Position is record
Row : Height := 1;
Column : Width := 1;

end record;

procedure Beep;
-- Pre: none
-- Post: the terminal beeps once

procedure ClearScreen;

1 https://en.wikipedia.org/wiki/Dining_Philosophers
2 https://en.wikipedia.org/wiki/deadlock

331

https://en.wikipedia.org/wiki/Dining_Philosophers
https://en.wikipedia.org/wiki/deadlock

Portable Dining Philosophers Example

-- Pre: none
-- Post: the terminal screen is cleared

procedure MoveCursor (To : in Position);
-- Pre: To is defined
-- Post: the terminal cursor is moved to the given position

end Screen;
--::::::::::
--windows.ads
--::::::::::
with Screen;
package Windows is

-- manager for simple, nonoverlapping screen windows
-- Michael Feldman, The George Washington University
-- July, 1995

type Window is private;

function Open (UpperLeft : Screen.Position;
Height : Screen.Height;
Width : Screen.Width) return Window;

-- Pre: W, Height, and Width are defined
-- Post: returns a Window with the given upper-left corner,
-- height, and width

procedure Title (W : in out Window;
Name : in String;
Under : in Character);

-- Pre: W, Name, and Under are defined
-- Post: Name is displayed at the top of the window W, underlined
-- with the character Under.

procedure Borders (W : in out Window;
Corner : in Character
Down : in Character
Across : in Character);

-- Pre: All parameters are defined
-- Post: Draw border around current writable area in window with
-- characters specified. Call this BEFORE Title.

procedure MoveCursor (W : in out Window;
P : in Screen.Position);

-- Pre: W and P are defined, and P lies within the area of W
-- Post: Cursor is moved to the specified position.
-- Coordinates are relative to the
-- upper left corner of W, which is (1, 1)

procedure Put (W : in out Window;
Ch : in Character);

-- Pre: W and Ch are defined.
-- Post: Ch is displayed in the window at
-- the next available position.
-- If end of column, go to the next row.
-- If end of window, go to the top of the window.

procedure Put (W : in out Window;
S : in String);

-- Pre: W and S are defined
-- Post: S is displayed in the window, "line-wrapped" if necessary

procedure New_Line (W : in out Window);
-- Pre: W is defined
-- Post: Cursor moves to beginning of next line of W;
-- line is not blanked until next character is written

332

Summary

private
type Window is record
First : Screen.Position; -- coordinates of upper left
Last : Screen.Position; -- coordinates of lower right
Current : Screen.Position; -- current cursor position

end record;

end Windows;
--::::::::::
--Picture.ads
--::::::::::
with Windows;
with Screen;
package Picture is

-- Manager for semigraphical presentation of the philosophers
-- i.e. more application oriented windows, build on top of
-- the windows package.
-- Each picture has an orientation, which defines which borders
-- top-bottom, bottom-top, left-right, or right-left correspond
-- to the left and right hand of the philosopher.
--
-- Bjorn Kallberg, CelsiusTech Systems, Sweden
-- July, 1995

type Root is abstract tagged private;
type Root_Ptr is access Root'Class;

procedure Open (W : in out Root;
UpperLeft : in Screen.Position;
Height : in Screen.Height;
Width : in Screen.Width);

-- Pre: Not opened
-- Post: An empty window exists

procedure Title (W : in out Root;
Name : in String);

-- Pre: An empty window
-- Post: Name and a border is drawn.

procedure Put_Line (W : in out Root;
S : in String);

procedure Left_Fork (W : in out Root;
Pick : in Boolean) is abstract;

procedure Right_Fork (W : in out Root;
Pick : in Boolean) is abstract;

-- left and right relates to philosopher position around table

type North is new Root with private;
type South is new Root with private;
type East is new Root with private;
type West is new Root with private;

private
type Root is abstract tagged record

W : Windows.Window;
end record;

type North is new Root with null record;
type South is new Root with null record;
type East is new Root with null record;
type West is new Root with null record;

procedure Left_Fork (W : in out North;
Pick : in Boolean);

333

Portable Dining Philosophers Example

procedure Right_Fork (W : in out North;
Pick : in Boolean);

procedure Left_Fork (W : in out South;
Pick : in Boolean);

procedure Right_Fork (W : in out South;
Pick : in Boolean);

procedure Left_Fork (W : in out East;
Pick : in Boolean);

procedure Right_Fork (W : in out East;
Pick : in Boolean);

procedure Left_Fork (W : in out West;
Pick : in Boolean);

procedure Right_Fork (W : in out West;
Pick : in Boolean);

end Picture;
--::::::::::
--chop.ads
--::::::::::
package Chop is

-- Dining Philosophers - Ada 95 edition
-- Chopstick is an Ada 95 protected type
-- Michael B. Feldman, The George Washington University,
-- July, 1995.

protected type Stick is
entry Pick_Up;
procedure Put_Down;

private
In_Use: Boolean := False;

end Stick;

end Chop;

--::::::::::
--society.ads
--::::::::::
package Society is

-- Dining Philosophers - Ada 95 edition
-- Society gives unique ID's to people, and registers their names
-- Michael B. Feldman, The George Washington University,
-- July, 1995.

subtype Unique_DNA_Codes is Positive range 1 .. 5;

Name_Register : array (Unique_DNA_Codes) of String (1 .. 18) :=

("Edsger Dijkstra ",
"Bjarne Stroustrup ",
"Chris Anderson ",
"Tucker Taft ",
"Jean Ichbiah ");

end Society;
--::::::::::
--phil.ads
--::::::::::
with Society;
package Phil is

-- Dining Philosophers - Ada 95 edition

334

Summary

-- Philosopher is an Ada 95 task type with discriminant
-- Michael B. Feldman, The George Washington University,
-- July 1995
--
-- Revisions:
-- July 1995. Bjorn Kallberg, CelsiusTech
-- Reporting left or right instead of first stick

task type Philosopher (My_ID : Society.Unique_DNA_Codes) is

entry Start_Eating (Chopstick1 : in Positive;
Chopstick2 : in Positive);

end Philosopher;

type States is (Breathing, Thinking, Eating, Done_Eating,
Got_Left_Stick, Got_Right_Stick, Got_Other_Stick, Dying);

end Phil;
--::::::::::
--room.ads
--::::::::::
with Chop;
with Phil;
with Society;
package Room is

-- Dining Philosophers - Ada 95 edition

-- Room.Maitre_D is responsible for assigning seats at the
-- table, "left" and "right" chopsticks, and for reporting
-- interesting events to the outside world.

-- Michael B. Feldman, The George Washington University,
-- July, 1995.

Table_Size : constant := 5;
subtype Table_Type is Positive range 1 .. Table_Size;

Sticks : array (Table_Type) of Chop.Stick;

task Maitre_D is
entry Start_Serving;
entry Report_State (Which_Phil : in Society.Unique_DNA_Codes;

State : in Phil.States;
How_Long : in Natural := 0;
Which_Meal : in Natural := 0);

end Maitre_D;

end Room;
--::::::::::
--random_generic.adb
--::::::::::
with Ada.Numerics.Discrete_Random;
package body Random_Generic is

-- Body of random number generator package.
-- Uses Ada 95 random number generator; hides generator parameters
-- Michael B. Feldman, The George Washington University,
-- June 1995.

package Ada95_Random is new Ada.Numerics.Discrete_Random
(Result_Subtype => Result_Subtype);

G : Ada95_Random.Generator;

335

Portable Dining Philosophers Example

function Random_Value return Result_Subtype is
begin

return Ada95_Random.Random (Gen => G);
end Random_Value;

begin -- Random_Generic

Ada95_Random.Reset (Gen => G); -- time-dependent initialization

end Random_Generic;
--::::::::::
--screen.adb
--::::::::::
with Text_IO;
package body Screen is

-- simple ANSI terminal emulator
-- Michael Feldman, The George Washington University
-- July, 1995

-- These procedures will work correctly only if the actual
-- terminal is ANSI compatible. ANSI.SYS on a DOS machine
-- will suffice.

package Int_IO is new Text_IO.Integer_IO (Num => Integer);

procedure Beep is
begin

Text_IO.Put (Item => ASCII.BEL);
end Beep;

procedure ClearScreen is
begin
Text_IO.Put (Item => ASCII.ESC);
Text_IO.Put (Item => "[2J");

end ClearScreen;

procedure MoveCursor (To : in Position) is
begin
Text_IO.New_Line;
Text_IO.Put (Item => ASCII.ESC);
Text_IO.Put ("[");
Int_IO.Put (Item => To.Row, Width => 1);
Text_IO.Put (Item => ';');
Int_IO.Put (Item => To.Column, Width => 1);
Text_IO.Put (Item => 'f');

end MoveCursor;

end Screen;
--::::::::::
--windows.adb
--::::::::::
with Text_IO, with Screen;
package body Windows is

-- manager for simple, nonoverlapping screen windows
-- Michael Feldman, The George Washington University
-- July, 1995

function Open (UpperLeft : Screen.Position;
Height : Screen.Height;
Width : Screen.Width) return Window is

Result : Window;
begin
Result.Current := UpperLeft;
Result.First := UpperLeft;

336

Summary

Result.Last := (Row => UpperLeft.Row + Height - 1,
Column => UpperLeft.Column + Width - 1);

return Result;
end Open;

procedure EraseToEndOfLine (W : in out Window) is
begin
Screen.MoveCursor (W.Current);
for Count in W.Current.Column .. W.Last.Column loop
Text_IO.Put (' ');

end loop;
Screen.MoveCursor (W.Current);

end EraseToEndOfLine;

procedure Put (W : in out Window;
Ch : in Character) is

begin

-- If at end of current line, move to next line
if W.Current.Column > W.Last.Column then
if W.Current.Row = W.Last.Row then
W.Current.Row := W.First.Row;

else
W.Current.Row := W.Current.Row + 1;

end if;
W.Current.Column := W.First.Column;

end if;

-- If at First char, erase line
if W.Current.Column = W.First.Column then
EraseToEndOfLine (W);

end if;

Screen.MoveCursor (To => W.Current);

-- here is where we actually write the character!
Text_IO.Put (Ch);
W.Current.Column := W.Current.Column + 1;

end Put;

procedure Put (W : in out Window;
S : in String) is

begin
for Count in S'Range loop
Put (W, S (Count));

end loop;
end Put;

procedure New_Line (W : in out Window) is
begin

if W.Current.Column = 1 then
EraseToEndOfLine (W);

end if;
if W.Current.Row = W.Last.Row then
W.Current.Row := W.First.Row;

else
W.Current.Row := W.Current.Row + 1;

end if;
W.Current.Column := W.First.Column;

end New_Line;
procedure Title (W : in out Window;

Name : in String;
Under : in Character) is

begin
-- Put name on top line

337

Portable Dining Philosophers Example

W.Current := W.First;
Put (W, Name);
New_Line (W);
-- Underline name if desired, and reduce the writable area
-- of the window by one line
if Under = ' ' then -- no underlining
W.First.Row := W.First.Row + 1;

else -- go across the row, underlining
for Count in W.First.Column .. W.Last.Column loop

Put (W, Under);
end loop;
New_Line (W);
W.First.Row := W.First.Row + 2; -- reduce writable area

end if;
end Title;

procedure Borders (W : in out Window;
Corner : in Character
Down : in Character
Across : in Character is

,
begin
-- Put top line of border
Screen.MoveCursor (W.First);
Text_IO.Put (Corner);
for Count in W.First.Column + 1 .. W.Last.Column - 1 loop
Text_IO.Put (Across);

end loop;
Text_IO.Put (Corner);

-- Put the two side lines
for Count in W.First.Row + 1 .. W.Last.Row - 1 loop
Screen.MoveCursor ((Row => Count, Column => W.First.Column));
Text_IO.Put (Down);
Screen.MoveCursor ((Row => Count, Column => W.Last.Column));
Text_IO.Put (Down);

end loop;

-- Put the bottom line of the border
Screen.MoveCursor ((Row => W.Last.Row, Column => W.First.Column));
Text_IO.Put (Corner);
for Count in W.First.Column + 1 .. W.Last.Column - 1 loop
Text_IO.Put (Across);

end loop;
Text_IO.Put (Corner);

-- Make the Window smaller by one character on each side
W.First := (Row => W.First.Row + 1, Column => W.First.Column + 1);
W.Last := (Row => W.Last.Row - 1, Column => W.Last.Column - 1);
W.Current := W.First;

end Borders;

procedure MoveCursor (W : in out Window;
P : in Screen.Position) is

-- Relative to writable Window boundaries, of course
begin
W.Current.Row := W.First.Row + P.Row;
W.Current.Column := W.First.Column + P.Column;

end MoveCursor;

begin -- Windows

Text_IO.New_Line;
Screen.ClearScreen;
Text_IO.New_Line;

338

Summary

end Windows;

package Windows.Util is

--
-- Child package to change the borders of an existing window
-- Bjorn Kallberg, CelsiusTech Systems, Sweden
-- July, 1995.

-- call these procedures after border and title
procedure Draw_Left (W : in out Window;

C : in Character);
procedure Draw_Right (W : in out Window;

C : in Character);
procedure Draw_Top (W : in out Window;

C : in Character);
procedure Draw_Bottom (W : in out Window;

C : in Character);

end Windows.Util;

with Text_IO;
package body Windows.Util is

-- Bjorn Kallberg, CelsiusTech Systems, Sweden
-- July, 1995.

-- When making borders and titles, the size has shrunk, so
-- we must now draw outside the First and Last points

procedure Draw_Left (W : in out Window;
C : in Character) is

begin
for R in W.First.Row - 3 .. W.Last.Row + 1 loop
Screen.MoveCursor ((Row => R, Column => W.First.Column-1));
Text_IO.Put (C);

end loop;
end;

procedure Draw_Right (W : in out Window;
C : in Character) is

begin
for R in W.First.Row - 3 .. W.Last.Row + 1 loop

Screen.MoveCursor ((Row => R, Column => W.Last.Column + 1));
Text_IO.Put (C);

end loop;
end;

procedure Draw_Top (W : in out Window;
C : in Character) is

begin
for I in W.First.Column - 1 .. W.Last.Column + 1 loop

Screen.MoveCursor ((Row => W.First.Row - 3, Column => I));
Text_IO.Put (C);

end loop;
end;

procedure Draw_Bottom (W : in out Window;
C : in Character) is

begin
for I in W.First.Column - 1 .. W.Last.Column + 1 loop

Screen.MoveCursor ((Row => W.Last.Row + 1, Column => I));
Text_IO.Put (C);

end loop;
end;

end Windows.Util;

339

Portable Dining Philosophers Example

--::::::::::
--Picture.adb
--::::::::::
with Windows.Util;
package body Picture is
--
-- Bjorn Kallberg, CelsiusTech Systems, Sweden
-- July, 1995

function Vertical_Char (Stick : Boolean) return Character is
begin

if Stick then
return '#';

else
return ':';

end if;
end;

function Horizontal_Char (Stick : Boolean) return Character is
begin

if Stick then
return '#';

else
return '-';

end if;
end;

procedure Open (W : in out Root;
UpperLeft : in Screen.Position;
Height : in Screen.Height;
Width : in Screen.Width) is

begin
W.W := Windows.Open (UpperLeft, Height, Width);

end;

procedure Title (W : in out Root;
Name : in String) is

-- Pre: An empty window
-- Post: Name and a boarder is drawn.

begin
Windows.Borders (W.W, '+', ':', '-');
Windows.Title (W.W, Name,'-');

end;

procedure Put_Line (W : in out Root;
S : in String) is

begin
Windows.Put (W.W, S);
Windows.New_Line (W.W);

end;

-- North
procedure Left_Fork (W : in out North;

Pick : in Boolean) is
begin

Windows.Util.Draw_Right (W.W, Vertical_Char (Pick));
end;

procedure Right_Fork (W : in out North;
Pick : in Boolean) is

begin
Windows.Util.Draw_Left (W.W, Vertical_Char (Pick));

end;

-- South

340

Summary

procedure Left_Fork (W : in out South;
Pick : in Boolean) is

begin
Windows.Util.Draw_Left (W.W, Vertical_Char (Pick));

end;

procedure Right_Fork (W : in out South;
Pick : in Boolean) is

begin
Windows.Util.Draw_Right (W.W, Vertical_Char (Pick));

end;

-- East
procedure Left_Fork (W : in out East;

Pick : in Boolean) is
begin

Windows.Util.Draw_Bottom (W.W, Horizontal_Char (Pick));
end;
procedure Right_Fork (W : in out East;

Pick : in Boolean) is
begin

Windows.Util.Draw_Top (W.W, Horizontal_Char (Pick));
end;

-- West
procedure Left_Fork (W : in out West;

Pick : in Boolean) is
begin

Windows.Util.Draw_Top (W.W, Horizontal_Char (Pick));
end;

procedure Right_Fork (W : in out West;
Pick : in Boolean) is

begin
Windows.Util.Draw_Bottom (W.W, Horizontal_Char (Pick));

end;

end Picture;

--::::::::::
--chop.adb
--::::::::::
package body Chop is

-- Dining Philosophers - Ada 95 edition
-- Chopstick is an Ada 95 protected type
-- Michael B. Feldman, The George Washington University,
-- July, 1995.

protected body Stick is

entry Pick_Up when not In_Use is
begin
In_Use := True;

end Pick_Up;

procedure Put_Down is
begin
In_Use := False;

end Put_Down;

end Stick;

end Chop;
--::::::::::
--phil.adb

341

Portable Dining Philosophers Example

--::::::::::
with Society;
with Room;
with Random_Generic;
package body Phil is

-- Dining Philosophers - Ada 95 edition
-- Philosopher is an Ada 95 task type with discriminant.

-- Chopsticks are assigned by a higher authority, which
-- can vary the assignments to show different algorithms.
-- Philosopher always grabs First_Grab, then Second_Grab.
-- Philosopher is oblivious to outside world, but needs to
-- communicate is life-cycle events the Maitre_D.
-- Chopsticks assigned to one philosopher must be
-- consecutive numbers, or the first and last chopstick.

-- Michael B. Feldman, The George Washington University,
-- July, 1995.
-- Revisions:
-- July, 1995. Bjorn Kallberg, CelsiusTech

subtype Think_Times is Positive range 1 .. 8;
package Think_Length is

new Random_Generic (Result_Subtype => Think_Times);

subtype Meal_Times is Positive range 1 .. 10;
package Meal_Length is

new Random_Generic (Result_Subtype => Meal_Times);

task body Philosopher is -- My_ID is discriminant

subtype Life_Time is Positive range 1 .. 5;

Who_Am_I : Society.Unique_DNA_Codes := My_ID; -- discriminant
First_Grab : Positive;
Second_Grab : Positive;
Meal_Time : Meal_Times;
Think_Time : Think_Times;
First_Stick : States;

begin
-- get assigned the first and second chopsticks here

accept Start_Eating (Chopstick1 : in Positive;
Chopstick2 : in Positive) do

First_Grab := Chopstick1;
Second_Grab := Chopstick2;
if (First_Grab mod Room.Table_Type'Last) + 1 = Second_Grab then

First_Stick := Got_Right_Stick;
else

First_Stick := Got_Left_Stick;
end if;

end Start_Eating;
Room.Maitre_D.Report_State (Who_Am_I, Breathing);

for Meal in Life_Time loop
Room.Sticks (First_Grab).Pick_Up;
Room.Maitre_D.Report_State (Who_Am_I, First_Stick, First_Grab);
Room.Sticks (Second_Grab).Pick_Up;
Room.Maitre_D.Report_State (Who_Am_I, Got_Other_Stick, Second_Grab);
Meal_Time := Meal_Length.Random_Value;
Room.Maitre_D.Report_State (Who_Am_I, Eating, Meal_Time, Meal);
delay Duration (Meal_Time);
Room.Maitre_D.Report_State (Who_Am_I, Done_Eating);
Room.Sticks (First_Grab).Put_Down;
Room.Sticks (Second_Grab).Put_Down;

342

Summary

Think_Time := Think_Length.Random_Value;
Room.Maitre_D.Report_State (Who_Am_I, Thinking, Think_Time);
delay Duration (Think_Time);

end loop;
Room.Maitre_D.Report_State (Who_Am_I, Dying);

end Philosopher;
end Phil;
--::::::::::
--room.adb
--::::::::::
with Picture;
with Chop;
with Phil;
with Society;
with Calendar;
pragma Elaborate (Phil);
package body Room is

-- Dining Philosophers, Ada 95 edition
-- A line-oriented version of the Room package
-- Michael B. Feldman, The George Washington University,
-- July, 1995.
-- Revisions
-- July, 1995. Bjorn Kallberg, CelsiusTech Systems, Sweden.
-- Pictorial display of stick in use

-- philosophers sign into dining room, giving Maitre_D their DNA code

Dijkstra : aliased Phil.Philosopher (My_ID => 1);
Stroustrup : aliased Phil.Philosopher (My_ID => 2);
Anderson : aliased Phil.Philosopher (My_ID => 3);
Taft : aliased Phil.Philosopher (My_ID => 4);
Ichbiah : aliased Phil.Philosopher (My_ID => 5);

type Philosopher_Ptr is access all Phil.Philosopher;

Phils : array (Table_Type) of Philosopher_Ptr;
Phil_Pics : array (Table_Type) of Picture.Root_Ptr;
Phil_Seats : array (Society.Unique_DNA_Codes) of Table_Type;

task body Maitre_D is

T : Natural;
Start_Time : Calendar.Time;
Blanks : constant String := " ";

begin

accept Start_Serving;

Start_Time := Calendar.Clock;

-- now Maitre_D assigns phils to seats at the table

Phils :=
(Dijkstra'Access,
Anderson'Access,
Ichbiah'Access,
Taft'Access,
Stroustrup'Access);

-- Which seat each phil occupies.
for I in Table_Type loop

Phil_Seats (Phils(I).My_Id) := I;
end loop;

343

Portable Dining Philosophers Example

Phil_Pics :=
(new Picture.North,
new Picture.East,
new Picture.South,
new Picture.South,
new Picture.West);

Picture.Open (Phil_Pics(1).all,(1, 24), 7, 30);
Picture.Open (Phil_Pics(2).all,(9, 46), 7, 30);
Picture.Open (Phil_Pics(3).all,(17, 41), 7, 30);
Picture.Open (Phil_Pics(4).all,(17, 7), 7, 30);
Picture.Open (Phil_Pics(5).all,(9, 2), 7, 30);

-- and assigns them their chopsticks.

Phils (1).Start_Eating (1, 2);
Phils (3).Start_Eating (3, 4);
Phils (2).Start_Eating (2, 3);
Phils (5).Start_Eating (1, 5);
Phils (4).Start_Eating (4, 5);

loop
select

accept Report_State (Which_Phil : in Society.Unique_DNA_Codes;
State : in Phil.States;
How_Long : in Natural := 0;
Which_Meal : in Natural := 0) do

T := Natural (Calendar."-" (Calendar.Clock, Start_Time));

case State is

when Phil.Breathing =>
Picture.Title (Phil_Pics (Phil_Seats (Which_Phil)).all,

Society.Name_Register (Which_Phil));
Picture.Put_line (Phil_Pics (Phil_Seats (Which_Phil)).all,

"T =" & Integer'Image (T) & " "
& "Breathing...");

when Phil.Thinking =>
Picture.Put_line (Phil_Pics (Phil_Seats (Which_Phil)).all,

"T =" & Integer'Image (T) & " "
& "Thinking"
& Integer'Image (How_Long) & " seconds.");

when Phil.Eating =>
Picture.Put_line (Phil_Pics (Phil_Seats (Which_Phil)).all,

"T =" & Integer'Image (T) & " "
& "Meal"
& Integer'Image (Which_Meal)
& ","
& Integer'Image (How_Long) & " seconds.");

when Phil.Done_Eating =>
Picture.Put_line (Phil_Pics (Phil_Seats (Which_Phil)).all,

"T =" & Integer'Image (T) & " "
& "Yum-yum (burp)");

Picture.Left_Fork (Phil_Pics (Phil_Seats (Which_Phil)).all,
False);

Picture.Right_Fork (Phil_Pics (Phil_Seats (Which_Phil)).all,
False);

when Phil.Got_Left_Stick =>
Picture.Put_line (Phil_Pics (Phil_Seats (Which_Phil)).all,

"T =" & Integer'Image (T) & " "
& "First chopstick"

344

Summary

& Integer'Image (How_Long));
Picture.Left_Fork (Phil_Pics (Phil_Seats (Which_Phil)).all, True);

when Phil.Got_Right_Stick =>
Picture.Put_line (Phil_Pics (Phil_Seats (Which_Phil)).all,

"T =" & Integer'Image (T) & " "
& "First chopstick"
& Integer'Image (How_Long));

Picture.Right_Fork (Phil_Pics (Phil_Seats (Which_Phil)).all,
True);

when Phil.Got_Other_Stick =>
Picture.Put_line (Phil_Pics (Phil_Seats (Which_Phil)).all,

"T =" & Integer'Image (T) & " "
& "Second chopstick"
& Integer'Image (How_Long));

Picture.Left_Fork (Phil_Pics (Phil_Seats (Which_Phil)).all, True);
Picture.Right_Fork (Phil_Pics (Phil_Seats (Which_Phil)).all,

True);

when Phil.Dying =>
Picture.Put_line (Phil_Pics (Phil_Seats (Which_Phil)).all,

"T =" & Integer'Image (T) & " "
& "Croak");

end case; -- State

end Report_State;

or
terminate;

end select;

end loop;

end Maitre_D;

end Room;

--::::::::::
--diners.adb
--::::::::::
with Text_IO;
with Room;
procedure Diners is

-- Dining Philosophers - Ada 95 edition

-- This is the main program, responsible only for telling the
-- Maitre_D to get busy.

-- Michael B. Feldman, The George Washington University,
-- July, 1995.

begin
--Text_IO.New_Line; -- artifice to flush output buffer
Room.Maitre_D.Start_Serving;

end Diners;

This version of the Dining Philosophers example was provided by Dr. Michael B. Feldman
of the George Washington University and Bjorn Kallberg of CelciusTech Systems, Sweden.
This example was compiled using the GNAT Ada 95 compiler, version 2.07, on a Sun
platform.

345

13 References
• ACES
• 1995a. Ada Compiler Evaluation System Primer, version 2.0. Wright-Patterson Air
Force Base, Ohio: High Order Language Control Facility (88 CG/SCTL).

• 1995b. Ada Compiler Evaluation System Reader's Guide, version 2.0. Wright-
Patterson Air Force Base, Ohio: High Order Language Control Facility (88 CG/SCTL).

• 1995c. Ada Compiler Evaluation System User's Guide, version 2.0. Wright-Patterson
Air Force Base, Ohio: High Order Language Control Facility (88 CG/SCTL).

• Ada Reference Manual
• 1983. Reference Manual for the Ada Programming Language. Department of Defense,
ANSI/MIL-STD-1815A.

• 1995. Ada 95 Reference Manual, ISO/8652-1995 Cambridge, Massachusetts: Intermet-
rics, Inc.

• AIRMICS - 1990 . Software Reuse Guidelines, ASQB-GI-90-015. U.S. Army Institute for
Research in Management Information, Communications, and Computer Sciences.

• Anderson, T., and R.W. Witty - 1978. Safe Programming. BIT (Tidscrift Nordisk for
Informations Behandling) 18:1-8.

• ARTEWG - 1986. Catalogue of Ada Runtime Implementation Dependencies. Draft
version. Association for Computing Machinery, Special Interest Group for Ada, Ada
Run-Time Environments Working Group.

• Baker, Henry G. - 1991. ”A Heavy Thought . . .” Ada Letters. 11,2:45.
• Barbey, S., M. Kempe, and A. Strohmeier - 1994. ”Advanced Object-Oriented Program-
ming With Ada 9X.” TRI-Ada '94 Tutorial Proceedings, pp. 373–467.

• Barnes, J.G.P.
• 1989. Programming in Ada. 3d ed. Reading, Massachusetts: Addison-Wesley.
• 1996. Programming in Ada 95. Reading, Massachusetts: Addison-Wesley.

• Booch, G.
• 1986. Software Engineering With Ada. 2d ed. Menlo Park, California: The Ben-
jamin/Cummings Publishing Company, Inc.

• 1987. Software Components With Ada-Structures, Tools and Subsystems. Menlo Park,
California: The Benjamin/Cummings Publishing Company, Inc.

• 1994. Object-Oriented Analysis and Design. 2d ed. Menlo Park, California: The
Benjamin/Cummings Publishing Company, Inc.

• Brosgol, B., R. Eachus, and D. Emery - 1994. Ada for Information Systems: A Style
Guide. Bedford, Massachusetts: MITRE.

• CECOM - 1989. CECOM ”Final Report-Catalogue of Ada Runtime Implementation
Dependencies,” CIN; C02092JNB0001.

• Charette, R.N. - 1986. Software Engineering Environments Concepts and Technology.
Intertext Publications Inc. New York, New York: McGraw-Hill Inc.

• Clapp, R.M, T. Mudge, and D.M. Roy - 1990. ”Rationale,” Ada Letters. 10,3.
• Cohen, N.H.

347

References

• 1986. Ada as a Second Language. New York, New York: McGraw-Hill Inc.
• 1996. Ada as a Second Language. 2nd edition. New York, New York: McGraw-Hill
Inc.

• Cohen, N., M. Kamrad, E. Schonberg, and R. Dewar - 1993.”Ada 9X as a Second Ada.”
TRI-Ada '93 Tutorial Proceedings, pp. 1115–1196.

• Conti, R.A. - 1987. Critical Run-Time Design Tradeoffs in an Ada Implementation.
Proceedings of the Joint Ada Conference, Fifth National Conference on Ada Technology
and Washington Ada Symposium. pp. 486–495.

• Dewar, R. - 1995. Newsgroup discussion on comp.lang.ada. February 11, 1994. Subject:
Constructor in ADA9X.

• Edwards, S. - 1990. An Approach for Constructing Reusable Software Components in
Ada, IDA Paper P-2378. Institute for Defense Analyses.

• Goforth, A., P. Collard, and M. Marquardt - 1990. ”Performance Measurement of Parallel
Ada,” Ada Letters. 10,3.

• Gonzalez, Dean W. - 1991. ”'=' Considered Harmful,” Ada Letters. 11,2:56.
• Goodenough, J., and L. Sha - 1988. The Priority Ceiling Protocol: A Method for Min-
imizing the Blocking of High Priority Ada Tasks, Tech. Rep. SEI-SSR-4. Pittsburgh,
Pennsylvania: Software Engineering Institute.

• Griest - 1989. ”Limitations on the Portability of Real Time Ada Programs,” Proceedings
of the 1989 Tri-Ada Conference, Tom Griest.

• Hefley, W., J. Foreman, C. Engle, and J. Goodenough - 1992. Ada Adoption Handbook: A
Program Manager's Guide, version 2.0. CMU/SEI-92-TR-29. Pittsburgh, Pennsylvania:
Software Engineering Institute.

• Honeywell - 1986. A Guidebook for Writing Reusable Source Code in Ada. Corporate
Systems Development Division. Version 1.1. CSC-86-3:8213.

• IEEE Dictionary - 1984. IEEE Standard Dictionary of Electrical and Electronics Terms.
ANSI/IEEE STD 100-1984.

• Intermetrics - 1995. Changes to Ada-1987 to 1995, version 6.0. ISO/IEC 8652:1995(E),
1995.

• Jacobson, I. et al. - 1992. Object-Oriented Software Engineering. Reading, Mas-
sachusetts: Addison-Wesley.

• Knight, J. - 1990. ”On the Assessment of Ada Performance,” Ada Letters. 10,3.
• MacLaren, L. - 1980. Evolving Toward Ada in Real Time Systems. ACM Sigplan Notices.
15(11):146-155.

• Matthews, E.R. - 1987. Observations on the Portability of Ada I/O. ACM Ada Letters.
VII(5): 100-103.

• Melliar-Smith, P.M., and B. Randell - 1987. Software Reliability: The Role of Pro-
grammed Exception Handling. ACM Sigplan Notices.12(3):95-100.

• NASA 1987. Ada Style Guide. Version 1.1, SEL-87-002. Greenbelt, Maryland: NASA,
Goddard Space Flight Center.

• 1992. Ada Efficiency Guide. Technical Note 552-FDD-91/068R0UD0. Greenbelt, Mary-
land: NASA, Goddard Space Flight Center.

• Newport, J.R. - 1995. ”A Performance Model for Real-Time Systems,” Ada Letters. 15,2.
• Nissen, J., and P. Wallis - 1984. Portability and Style in Ada. Cambridge University
Press.

• Pappas, F. - 1985. Ada Portability Guidelines. DTIC/NTIS #AD-A160 390.
• Pyle, I.C. - 1985. The Ada Programming Language. 2d ed. United Kingdom: Prentice-
Hall International.

348

Summary

• Rationale - 1995. Ada 95 Rationale, Cambridge, Massachusetts: Intermetrics, Inc.
• Rosen, J.P. 1987. In Defense of the 'Use' Clause. ACM Ada Letters. VII(7):77-81.
• 1995. A Naming Convention for Classes in Ada 9X. ACM Ada Letters. VXV(2):54-58.
• Ross, D. - 1989. The Form of a Passive Iterator. ACM Ada Letters. IX(2):102-105.
• Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen - 1991. Object-
Oriented Modeling and Design. Englewood Cliffs, New Jersey: Prentice-Hall.

• Sanden, B. - 1994. Software Systems Construction With Examples in Ada. Englewood
Cliffs, New Jersey: Prentice-Hall.

• Schneiderman, B. - 1986. Empirical Studies of Programmers: The Territory, Paths and
Destinations. Empirical Studies of Programmers, edited by E. Soloway and S. Iyengar.
Norwood, NJ: Ablex Publishing Corp. pp. 1–12.

• Software Productivity Consortium
• 1992. Ada Quality and Style: Guidelines for Professional Programmers, SPC-91061-
CMC, version 02.01.01. Herndon, Virginia: Software Productivity Consortium.

• 1993. ADARTS Guidebook, SPC-91104-MC, version 03.00.09. 2 vols. Herndon, Vir-
ginia: Software Productivity Consortium.

• Soloway, E., J. Pinto, S. Fertig, S. Letovsky, R. Lampert, D. Littman, and K. Ewing -
1986. Studying Software Documentation From a Cognitive Perspective: A Status Report.
Proceedings of the Eleventh Annual Software Engineering Workshop. Report SEL-86-006,
Software Engineering Laboratory. Greenbelt, Maryland: NASA, Goddard Space Flight
Center.

• Taft, S.T.
• 1994. Multiple Inheritance in Ada 9X. Cambridge, Massachusetts: Intermetrics, Inc.
• 1995a. Newsgroup discussion on comp.lang.ada. January 22, 1995. Subject:
Ada.strings.bounded problems?

• 1995b. Newsgroup discussion on comp.lang.ada. February 11, 1995. Subject: Con-
structor in ADA9X.

• Taylor, B. - 1995. Ada Compatibility Guide, version 6.0. United Kingdom: Transition
Technology Limited.

• United Technologies - 1987. CENC Programmer's Guide. Appendix A: Ada Program-
ming Standards.

• Volan, J. - 1994. Newsgroup discussion on comp.lang.ada. December 9, 1995. Subject:
Type extension vs. inheritance.

• Volz, R.A., Mudge, Naylor, and Mayer - 1985. Some Problems in Distributing Real-
Time Ada Programs Across Machines. Ada in Use, Proceedings of the Ada International
Conference. pp. 14–16. Paris.

• Wegner, P., and S.B. Zdonik - 1988. Inheritance as an Incremental Modification Mech-
anism or What Like Is and Isn't Like. Proceedings of the European Conference on
Object-Oriented Programming. LNCS 322. Springer-Verlag.

• Weidermann, N. - 1990. ”Hartstone: Synthetic Benchmark Requirements for Hard Real-
Time Applications,” Ada Letters. 10,3.

• Wheeler, David A. - 1992. Analysis and Guidelines for Reusable Ada Software. IDA
Paper P-2765. Alexandria, Virginia: Institute for Defense Analyses.

349

14 Bibliography
• ACVC (Ada Compiler Validation Capability). Ada Validation Facility, ASD/SIOL.
Wright-Patterson Air Force Base, Ohio.

• AIRMICS (1990). Software Reuse Guidelines. U.S. Army Institute for Research in
Management Information, Communications, and Computer Sciences. ASQB-GI-90-015.

• Ausnit, C., and K.A. Johnson. (March 1995). ”Ada 95 Quality and Style”. Proceedings
of the Thirteenth Annual National Conference on Ada Technology.

• BARDiN, THOMPSON (JANUARY–FEBRUARY 1988). ”COMPOSABLE ADA SOFT-
WARE COMPONENTS AND THE RE-EXPORT PARADiGM”1. ACM SIGAda Ada Let-
ters. New York, NY, USA: Association for Computing Machinery. VIII (1): 58–
79. doi2:10.1145/44766.447693. ISSN4 1094-36415. Retrieved 2009-06-28.{{cite
journal6}}: CS1 maint: date and year (link7) CS1 maint: date format (link8)

• BARDiN, THOMPSON (MARCH–APRiL 1988). ”USiNG THE RE-EXPORT PARADiGM
TO BUiLD COMPOSABLE ADA SOFTWARE COMPONENTS”9. ACM SIGAda Ada Let-
ters. New York, NY, USA: Association for Computing Machinery. VIII (2): 39–
54. doi10:10.1145/45380.4538111. ISSN12 1094-364113. Retrieved 2009-06-28.{{cite
journal14}}: CS1 maint: date and year (link15) CS1 maint: date format (link16)

• BROOKS, F.B (1975). The Mythical Man-Month. Essays on Software Engineering.
Reading, Massachusetts: Addison-Wesley.

• CRiSTiAN, F (MARCH 1984). ”CORRECT AND ROBUST PROGRAMS”. IEEE Transactions
on Software Engineering. 10 (2): 163–174.{{cite journal17}}: CS1 maint: date and
year (link18)

• Department of Defense, Ada Joint Program Office. Rationale for the Design of the Ada
Programming Language, 1984.

1 http://portal.acm.org/citation.cfm?id=44766.44769
2 https://en.wikibooks.org/w/index.php?title=Doi_(identifier)&action=edit&redlink=1
3 https://doi.org/10.1145%2F44766.44769
4 https://en.wikibooks.org/w/index.php?title=ISSN_(identifier)&action=edit&redlink=1
5 https://www.worldcat.org/issn/1094-3641
6 https://en.wikibooks.org/wiki/Template:Cite_journal
7 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
8 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_format
9 http://portal.acm.org/citation.cfm?id=45380.45381
10 https://en.wikibooks.org/w/index.php?title=Doi_(identifier)&action=edit&redlink=1
11 https://doi.org/10.1145%2F45380.45381
12 https://en.wikibooks.org/w/index.php?title=ISSN_(identifier)&action=edit&redlink=1
13 https://www.worldcat.org/issn/1094-3641
14 https://en.wikibooks.org/wiki/Template:Cite_journal
15 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
16 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_format
17 https://en.wikibooks.org/wiki/Template:Cite_journal
18 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year

351

http://portal.acm.org/citation.cfm?id=44766.44769
https://en.wikibooks.org/w/index.php?title=Doi_(identifier)&action=edit&redlink=1
https://doi.org/10.1145%2F44766.44769
https://en.wikibooks.org/w/index.php?title=ISSN_(identifier)&action=edit&redlink=1
https://www.worldcat.org/issn/1094-3641
https://en.wikibooks.org/wiki/Template:Cite_journal
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_format
http://portal.acm.org/citation.cfm?id=45380.45381
https://en.wikibooks.org/w/index.php?title=Doi_(identifier)&action=edit&redlink=1
https://doi.org/10.1145%2F45380.45381
https://en.wikibooks.org/w/index.php?title=ISSN_(identifier)&action=edit&redlink=1
https://www.worldcat.org/issn/1094-3641
https://en.wikibooks.org/wiki/Template:Cite_journal
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_format
https://en.wikibooks.org/wiki/Template:Cite_journal
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year

Bibliography

• Department of Defense, Ada Joint Program Office. Reference Manual for the Ada Pro-
gramming Language. ANSI/MIL-STD-1815A, January 1983.

• FOREMAN, J., AND J. GOODENOUGH (MAY 1987). Ada Adoption Handbook: A Program
Manager's Guide (Version 1.0 ed.). Pittsburgh, Pennsylvania: Software Engineering In-
stitute. CMU/SEI-87-TR-9 ESD-TR-87-110.{{cite book19}}: CS1 maint: date and
year (link20) CS1 maint: multiple names: authors list (link21)

• GARY, B., AND D. POKRASS (1985). Understanding Ada: A Software Engineering
Approach. John Wiley & Sons.{{cite book22}}: CS1 maint: multiple names: authors
list (link23)

• GOODENOUGH, J. B. (MARCH 1986). ”A SAMPLE OF ADA PROGRAMMER ER-
RORS”. UNPUBLiSHED DRAFT RESiDENT iN THE ADA REPOSiTORY UNDER FiLE NAME
PD2:<ADA.EDUCATION>PROGERRS.DOC.2. {{cite journal24}}: Cite journal re-
quires |journal= (help25)CS1 maint: date and year (link26)

• HERR, C.S. (AUGUST 1987). ”COMPiLER VALiDATiON AND REUSABLE SOFTWARE”.
ST. LOUiS, MiSSOURi: MCDONNELL DOUGLAS ASTRONAUTiCS COMPANY. {{cite
journal27}}: Cite journal requires |journal= (help28)CS1 maint: date and year (link29)
A Report from the CAMP Project

• International Workshop on Real-Time Ada Issues. ACM Ada Letters. VII(6). Morton-
hampstead, Devon, U.K., 1987.

• International Workshop on Real-Time Ada Issues II. ACM Ada Letters. VIII(6). Mor-
tonhampstead, Devon, U.K., 1988.

• Magnus Kempe (1995-08-19). ”Ada Programmer's Frequently Asked Questions (FAQ)”.
comp.lang.ada30. (Web link)31. Retrieved on 2009-06-28. Part 232, Part 333

• KERNiGHAN, B., AND P.J. PLAUGER (1978). The Elements of Programming Style.
New York, New York: McGraw-Hill, Inc.{{cite book34}}: CS1 maint: multiple names:
authors list (link35)

• MACLAREN, L. (NOVEMBER 1980). ”EVOLViNG TOWARD ADA iN REAL TiME SYS-
TEMS”. ACM Sigplan Notices. 15 (11): 146–155.{{cite journal36}}: CS1 maint: date
and year (link37)

• MOWDAY, B.L., AND E. NORMAND (NOVEMBER 1986). ”ADA PROGRAMMiNG STAN-
DARDS”. GENERAL DYNAMiCS DATA SYSTEMS DiViSiON DEPARTMENTAL INSTRUCTiON.

19 https://en.wikibooks.org/wiki/Template:Cite_book
20 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
21 https://en.wikibooks.org/wiki/Category:CS1_maint:_multiple_names:_authors_list
22 https://en.wikibooks.org/wiki/Template:Cite_book
23 https://en.wikibooks.org/wiki/Category:CS1_maint:_multiple_names:_authors_list
24 https://en.wikibooks.org/wiki/Template:Cite_journal
25 https://en.wikibooks.org/wiki/Help:CS1_errors#missing_periodical
26 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
27 https://en.wikibooks.org/wiki/Template:Cite_journal
28 https://en.wikibooks.org/wiki/Help:CS1_errors#missing_periodical
29 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
30 news:comp.lang.ada
31 http://groups.google.es/group/news.answers/msg/f001f14822b17426
32 http://groups.google.es/group/comp.lang.ada/msg/33004d41f35bdead
33 http://groups.google.es/group/news.answers/msg/0731234b0047f985
34 https://en.wikibooks.org/wiki/Template:Cite_book
35 https://en.wikibooks.org/wiki/Category:CS1_maint:_multiple_names:_authors_list
36 https://en.wikibooks.org/wiki/Template:Cite_journal
37 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year

352

https://en.wikibooks.org/wiki/Template:Cite_book
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
https://en.wikibooks.org/wiki/Category:CS1_maint:_multiple_names:_authors_list
https://en.wikibooks.org/wiki/Template:Cite_book
https://en.wikibooks.org/wiki/Category:CS1_maint:_multiple_names:_authors_list
https://en.wikibooks.org/wiki/Template:Cite_journal
https://en.wikibooks.org/wiki/Help:CS1_errors#missing_periodical
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
https://en.wikibooks.org/wiki/Template:Cite_journal
https://en.wikibooks.org/wiki/Help:CS1_errors#missing_periodical
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
news:comp.lang.ada
http://groups.google.es/group/news.answers/msg/f001f14822b17426
http://groups.google.es/group/comp.lang.ada/msg/33004d41f35bdead
http://groups.google.es/group/news.answers/msg/0731234b0047f985
https://en.wikibooks.org/wiki/Template:Cite_book
https://en.wikibooks.org/wiki/Category:CS1_maint:_multiple_names:_authors_list
https://en.wikibooks.org/wiki/Template:Cite_journal
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year

Summary

414.717. {{cite journal38}}: Cite journal requires |journal= (help39)CS1 maint: date
and year (link40) CS1 maint: multiple names: authors list (link41)

• NiSSEN, J.C.D., P. WALLiS, B.A. WiCHMANN (MARCH–APRiL 1982). ”ADA-EUROPE
GUiDELiNES FOR THE PORTABiLiTY OF ADA PROGRAMS”42. ACM SIGAda Ada Let-
ters. New York, NY, USA: Association for Computing Machinery. I (3): 44–
61. doi43:10.1145/989791.98979344. ISSN45 1094-364146. Retrieved 2009-06-28.{{cite
journal47}}: CS1 maint: date and year (link48) CS1 maint: date format (link49) CS1
maint: multiple names: authors list (link50)

• RYMER, J., AND T. MCKEEVER (SEPTEMBER 1986). ”THE FSD ADA STYLE GUiDE”.
IBM FEDERAL SYSTEMS DiViSiON ADA COORDiNATiNG GROUP. {{cite journal51}}:
Cite journal requires |journal= (help52)CS1 maint: date and year (link53) CS1 maint:
multiple names: authors list (link54)

• SOFTECH INC. (DECEMBER 1985). ”ISEC REUSABiLiTY GUiDELiNES” (REPORT 3285-4-
247/2). {{cite journal55}}: Cite journal requires |journal= (help56)CS1 maint: date
and year (link57) Also U.S. Army Information Systems Engineering Command. Waltham,
Massachusetts.

• Stark M., and E. Seidewitz (March 1987). ”Towards A General Object-Oriented Ada
Lifecycle”. Proceedings of the Joint Ada Conference. Fifth National Conference on Ada
Technology and Washington Ada Symposium. pp. 213−222.

• ST. DENNiS, R. (MAY 1986). A Guidebook for Writing Reusable Source Code in Ada
(version 1.1 ed.). Golden Valley, Minnesota: Honeywell Corporate Systems Development
Division. Report CSC-86-3:8213.{{cite book58}}: CS1 maint: date and year (link59)

• VANNESTE, K.F. (JANUARY–FEBRUARY 1986). ”ADA CODiNG STANDARDS AND CON-
VENTiONS”60. ACM SIGAda Ada Letters. New York, NY, USA: Association for Comput-

38 https://en.wikibooks.org/wiki/Template:Cite_journal
39 https://en.wikibooks.org/wiki/Help:CS1_errors#missing_periodical
40 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
41 https://en.wikibooks.org/wiki/Category:CS1_maint:_multiple_names:_authors_list
42 http://portal.acm.org/citation.cfm?id=989791.989793
43 https://en.wikibooks.org/w/index.php?title=Doi_(identifier)&action=edit&redlink=1
44 https://doi.org/10.1145%2F989791.989793
45 https://en.wikibooks.org/w/index.php?title=ISSN_(identifier)&action=edit&redlink=1
46 https://www.worldcat.org/issn/1094-3641
47 https://en.wikibooks.org/wiki/Template:Cite_journal
48 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
49 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_format
50 https://en.wikibooks.org/wiki/Category:CS1_maint:_multiple_names:_authors_list
51 https://en.wikibooks.org/wiki/Template:Cite_journal
52 https://en.wikibooks.org/wiki/Help:CS1_errors#missing_periodical
53 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
54 https://en.wikibooks.org/wiki/Category:CS1_maint:_multiple_names:_authors_list
55 https://en.wikibooks.org/wiki/Template:Cite_journal
56 https://en.wikibooks.org/wiki/Help:CS1_errors#missing_periodical
57 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
58 https://en.wikibooks.org/wiki/Template:Cite_book
59 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
60 http://portal.acm.org/citation.cfm?id=382256.382796

353

https://en.wikibooks.org/wiki/Template:Cite_journal
https://en.wikibooks.org/wiki/Help:CS1_errors#missing_periodical
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
https://en.wikibooks.org/wiki/Category:CS1_maint:_multiple_names:_authors_list
http://portal.acm.org/citation.cfm?id=989791.989793
https://en.wikibooks.org/w/index.php?title=Doi_(identifier)&action=edit&redlink=1
https://doi.org/10.1145%2F989791.989793
https://en.wikibooks.org/w/index.php?title=ISSN_(identifier)&action=edit&redlink=1
https://www.worldcat.org/issn/1094-3641
https://en.wikibooks.org/wiki/Template:Cite_journal
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_format
https://en.wikibooks.org/wiki/Category:CS1_maint:_multiple_names:_authors_list
https://en.wikibooks.org/wiki/Template:Cite_journal
https://en.wikibooks.org/wiki/Help:CS1_errors#missing_periodical
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
https://en.wikibooks.org/wiki/Category:CS1_maint:_multiple_names:_authors_list
https://en.wikibooks.org/wiki/Template:Cite_journal
https://en.wikibooks.org/wiki/Help:CS1_errors#missing_periodical
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
https://en.wikibooks.org/wiki/Template:Cite_book
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
http://portal.acm.org/citation.cfm?id=382256.382796

Bibliography

ing Machinery. VI (1): 41–48. doi61:10.1145/382256.38279662. ISSN63 1094-364164. Re-
trieved 2009-06-28.{{cite journal65}}: CS1 maint: date and year (link66) CS1 maint:
date format (link67)

61 https://en.wikibooks.org/w/index.php?title=Doi_(identifier)&action=edit&redlink=1
62 https://doi.org/10.1145%2F382256.382796
63 https://en.wikibooks.org/w/index.php?title=ISSN_(identifier)&action=edit&redlink=1
64 https://www.worldcat.org/issn/1094-3641
65 https://en.wikibooks.org/wiki/Template:Cite_journal
66 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
67 https://en.wikibooks.org/wiki/Category:CS1_maint:_date_format

354

https://en.wikibooks.org/w/index.php?title=Doi_(identifier)&action=edit&redlink=1
https://doi.org/10.1145%2F382256.382796
https://en.wikibooks.org/w/index.php?title=ISSN_(identifier)&action=edit&redlink=1
https://www.worldcat.org/issn/1094-3641
https://en.wikibooks.org/wiki/Template:Cite_journal
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_and_year
https://en.wikibooks.org/wiki/Category:CS1_maint:_date_format

15 GNU Free Documentation License

As of July 15, 2009 Wikibooks has moved to a dual-licensing system that super-
sedes the previous GFDL only licensing. In short, this means that text licensed
under the GFDL only can no longer be imported to Wikibooks, retroactive to
1 November 2008. Additionally, Wikibooks text might or might not now be ex-
portable under the GFDL depending on whether or not any content was added
and not removed since July 15.

Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software
Foundation, Inc. <1>

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

15.1 0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful
document ”free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

15.2 1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that

1 http://fsf.org/

355

http://fsf.org/

GNU Free Documentation License

work under the conditions stated herein. The ”Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as ”you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A ”Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A ”Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed
to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

A ”Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, ”Title Page” means the text

356

2. VERBATIM COPYING

near the most prominent appearance of the work's title, preceding the beginning of the
body of the text.

The ”publisher” means any person or entity that distributes copies of the Document to the
public.

A section ”Entitled XYZ” means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in an-
other language. (Here XYZ stands for a specific section name mentioned below, such as
”Acknowledgements”, ”Dedications”, ”Endorsements”, or ”History”.) To ”Preserve the Title”
of such a section when you modify the Document means that it remains a section ”Entitled
XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

15.3 2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

15.4 3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

357

GNU Free Documentation License

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

15.5 4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

2. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

3. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

4. Preserve all the copyright notices of the Document.
5. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

6. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

8. Include an unaltered copy of this License.
9. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled ”History” in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous
sentence.

358

5. COMBINING DOCUMENTS

10. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the ”History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

11. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the Title of
the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

13. Delete any section Entitled ”Endorsements”. Such a section may not be included in
the Modified version.

14. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict in title
with any Invariant Section.

15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version's license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

15.6 5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

359

GNU Free Documentation License

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in the various original
documents, forming one section Entitled ”History”; likewise combine any sections Entitled
”Acknowledgements”, and any sections Entitled ”Dedications”. You must delete all sections
Entitled ”Endorsements”.

15.7 6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

15.8 7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
”aggregate” if the copyright resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit. When the Document
is included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document's Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

15.9 8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in

360

9. TERMINATION

the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

15.10 9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

15.11 10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See 2.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License ”or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy's public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

2 http://www.gnu.org/copyleft/

361

http://www.gnu.org/copyleft/

GNU Free Documentation License

15.12 11. RELICENSING
”Massive Multiauthor Collaboration Site” (or ”MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server.
A ”Massive Multiauthor Collaboration” (or ”MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

”CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

”Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is ”eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

362

16 How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ”GNU

Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the

Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

• This page was last edited on 2 May 2017, at 01:13.
• Text is available under the Creative Commons Attribution-ShareAlike License1; addi-
tional terms may apply. By using this site, you agree to the Terms of Use2 and Privacy
Policy.3

1 http://creativecommons.org/licenses/by-sa/3.0/
2 http://foundation.wikimedia.org/wiki/Terms_of_Use
3 http://foundation.wikimedia.org/wiki/Privacy_policy

363

http://creativecommons.org/licenses/by-sa/3.0/
http://foundation.wikimedia.org/wiki/Terms_of_Use
http://foundation.wikimedia.org/wiki/Privacy_policy

17 Contributors

Edits User
6 Adrignola1
1 Alexandru.chircu2
4 Avicennasis3
1 Aya4
10 DannyS7125
1 Darklama6
3 Derbeth7
2 Dirk Hünniger8
5 DirkHerrmann9
9 Gsmith~enwikibooks10
1 Guanaco11
1 Jltokar12
1 Jomegat13
1 LlamaAl14
24 ManuelGR15
5 Maveric14916
1 Mbrickn17
15 Metamorf18
15 Pi zero19
13 PokestarFan20

1 https://en.wikibooks.org/wiki/User:Adrignola
2 https://en.wikibooks.org/w/index.php%3ftitle=User:Alexandru.chircu&action=edit&

redlink=1
3 https://en.wikibooks.org/wiki/User:Avicennasis
4 https://en.wikibooks.org/wiki/User:Aya
5 https://en.wikibooks.org/wiki/User:DannyS712
6 https://en.wikibooks.org/wiki/User:Darklama
7 https://en.wikibooks.org/wiki/User:Derbeth
8 https://en.wikibooks.org/wiki/User:Dirk_H%25C3%25BCnniger
9 https://en.wikibooks.org/wiki/User:DirkHerrmann
10 https://en.wikibooks.org/w/index.php%3ftitle=User:Gsmith~enwikibooks&action=edit&

redlink=1
11 https://en.wikibooks.org/wiki/User:Guanaco
12 https://en.wikibooks.org/w/index.php%3ftitle=User:Jltokar&action=edit&redlink=1
13 https://en.wikibooks.org/wiki/User:Jomegat
14 https://en.wikibooks.org/wiki/User:LlamaAl
15 https://en.wikibooks.org/wiki/User:ManuelGR
16 https://en.wikibooks.org/wiki/User:Maveric149
17 https://en.wikibooks.org/wiki/User:Mbrickn
18 https://en.wikibooks.org/w/index.php%3ftitle=User:Metamorf&action=edit&redlink=1
19 https://en.wikibooks.org/wiki/User:Pi_zero
20 https://en.wikibooks.org/wiki/User:PokestarFan

365

https://en.wikibooks.org/wiki/User:Adrignola
https://en.wikibooks.org/w/index.php%3ftitle=User:Alexandru.chircu&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Alexandru.chircu&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Avicennasis
https://en.wikibooks.org/wiki/User:Aya
https://en.wikibooks.org/wiki/User:DannyS712
https://en.wikibooks.org/wiki/User:Darklama
https://en.wikibooks.org/wiki/User:Derbeth
https://en.wikibooks.org/wiki/User:Dirk_H%25C3%25BCnniger
https://en.wikibooks.org/wiki/User:DirkHerrmann
https://en.wikibooks.org/w/index.php%3ftitle=User:Gsmith~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Gsmith~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Guanaco
https://en.wikibooks.org/w/index.php%3ftitle=User:Jltokar&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Jomegat
https://en.wikibooks.org/wiki/User:LlamaAl
https://en.wikibooks.org/wiki/User:ManuelGR
https://en.wikibooks.org/wiki/User:Maveric149
https://en.wikibooks.org/wiki/User:Mbrickn
https://en.wikibooks.org/w/index.php%3ftitle=User:Metamorf&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Pi_zero
https://en.wikibooks.org/wiki/User:PokestarFan

Contributors

1 Rickduley21
1 Robert Horning22
1 SB Johnny23
4 Samcconn24
94 Suruena25
4 Whiteknight26
2 Withinfocus27
1 WmRGreene28
1 Беспечная крыса29

21 https://en.wikibooks.org/w/index.php%3ftitle=User:Rickduley&action=edit&redlink=1
22 https://en.wikibooks.org/wiki/User:Robert_Horning
23 https://en.wikibooks.org/wiki/User:SB_Johnny
24 https://en.wikibooks.org/w/index.php%3ftitle=User:Samcconn&action=edit&redlink=1
25 https://en.wikibooks.org/wiki/User:Suruena
26 https://en.wikibooks.org/wiki/User:Whiteknight
27 https://en.wikibooks.org/wiki/User:Withinfocus
28 https://en.wikibooks.org/w/index.php%3ftitle=User:WmRGreene&action=edit&redlink=1

29
https://en.wikibooks.org/w/index.php%3ftitle=User:%25D0%2591%25D0%25B5%25D1%2581%
25D0%25BF%25D0%25B5%25D1%2587%25D0%25BD%25D0%25B0%25D1%258F_%25D0%25BA%25D1%2580%
25D1%258B%25D1%2581%25D0%25B0&action=edit&redlink=1

366

https://en.wikibooks.org/w/index.php%3ftitle=User:Rickduley&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Robert_Horning
https://en.wikibooks.org/wiki/User:SB_Johnny
https://en.wikibooks.org/w/index.php%3ftitle=User:Samcconn&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Suruena
https://en.wikibooks.org/wiki/User:Whiteknight
https://en.wikibooks.org/wiki/User:Withinfocus
https://en.wikibooks.org/w/index.php%3ftitle=User:WmRGreene&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:%25D0%2591%25D0%25B5%25D1%2581%25D0%25BF%25D0%25B5%25D1%2587%25D0%25BD%25D0%25B0%25D1%258F_%25D0%25BA%25D1%2580%25D1%258B%25D1%2581%25D0%25B0&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:%25D0%2591%25D0%25B5%25D1%2581%25D0%25BF%25D0%25B5%25D1%2587%25D0%25BD%25D0%25B0%25D1%258F_%25D0%25BA%25D1%2580%25D1%258B%25D1%2581%25D0%25B0&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:%25D0%2591%25D0%25B5%25D1%2581%25D0%25BF%25D0%25B5%25D1%2587%25D0%25BD%25D0%25B0%25D1%258F_%25D0%25BA%25D1%2580%25D1%258B%25D1%2581%25D0%25B0&action=edit&redlink=1

List of Figures

• GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.
html

• cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. http://
creativecommons.org/licenses/by-sa/3.0/

• cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. http://
creativecommons.org/licenses/by-sa/2.5/

• cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. http://
creativecommons.org/licenses/by-sa/2.0/

• cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. http://
creativecommons.org/licenses/by-sa/1.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.
org/licenses/by/2.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.
org/licenses/by/2.0/deed.en

• cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons.
org/licenses/by/2.5/deed.en

• cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons.
org/licenses/by/3.0/deed.en

• GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt

• LGPL: GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl.
html

• PD: This image is in the public domain.

• ATTR: The copyright holder of this file allows anyone to use it for any purpose,
provided that the copyright holder is properly attributed. Redistribution, derivative
work, commercial use, and all other use is permitted.

• EURO: This is the common (reverse) face of a euro coin. The copyright on the design
of the common face of the euro coins belongs to the European Commission. Authorised
is reproduction in a format without relief (drawings, paintings, films) provided they
are not detrimental to the image of the euro.

• LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de

• CFR: Copyright free use.

367

http://www.gnu.org/licenses/fdl.html
http://www.gnu.org/licenses/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://artlibre.org/licence/lal/de

List of Figures

• EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10.
php

Copies of the GPL, the LGPL as well as a GFDL are included in chapter Licenses30. Please
note that images in the public domain do not require attribution. You may click on the
image numbers in the following table to open the webpage of the images in your webbrower.

30 Chapter 18 on page 371

368

http://www.eclipse.org/org/documents/epl-v10.php
http://www.eclipse.org/org/documents/epl-v10.php

List of Figures

1 The people from the Tango! project31
2 BeatrixBelibaste, BotMultichill, Chenspec, Dcoetzee, Dead-

star, Ecummenic, Emijrpbot, Erik Baas, Gene.arboit, Her-
bythyme, Hsarrazin, Judithcomm, Kaldari, Kilom691, Mak-
Bot, ManuelGR, PMG, Pierpao, Poolio Bluxo, SarahStierch,
Seanturvey, Shakko, Speravir, SterkeBak, Thuresson, Von-
von, Wiki-uk

31 http://tango.freedesktop.org/The_People

369

https://en.wikibooks.org/wiki/File:Printer.svg
https://en.wikibooks.org/wiki/File:Ada_Lovelace_1838.jpg
http://tango.freedesktop.org/The_People

18 Licenses

18.1 GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed. Preamble

The GNU General Public License is a free, copyleft license for software
and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By con-
trast, the GNU General Public License is intended to guarantee your
freedom to share and change all versions of a program–to make sure
it remains free software for all its users. We, the Free Software Foun-
dation, use the GNU General Public License for most of our software;
it applies also to any other work released this way by its authors. You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have
the freedom to distribute copies of free software (and charge for them
if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free
programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis
or for a fee, you must pass on to the recipients the same freedoms that
you received. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they know
their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains
that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run mod-
ified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of protect-
ing users’ freedom to change the software. The systematic pattern of
such abuse occurs in the area of products for individuals to use, which
is precisely where it is most unacceptable. Therefore, we have designed
this version of the GPL to prohibit the practice for those products. If
such problems arise substantially in other domains, we stand ready to
extend this provision to those domains in future versions of the GPL,
as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of soft-
ware on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modi-
fication follow. TERMS AND CONDITIONS 0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this Li-
cense. Each licensee is addressed as “you”. “Licensees” and “recipients”
may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of
an exact copy. The resulting work is called a “modified version” of the
earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work
based on the Program.

To “propagate” a work means to do anything with it that, without per-
mission, would make you directly or secondarily liable for infringement
under applicable copyright law, except executing it on a computer or
modifying a private copy. Propagation includes copying, distribution
(with or without modification), making available to the public, and in
some countries other activities as well.

To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to
the extent that it includes a convenient and prominently visible fea-
ture that (1) displays an appropriate copyright notice, and (2) tells the
user that there is no warranty for the work (except to the extent that
warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a
prominent item in the list meets this criterion. 1. Source Code.

The “source code” for a work means the preferred form of the work for
making modifications to it. “Object code” means any non-source form
of a work.

A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that is
widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Ma-
jor Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system (if
any) on which the executable work runs, or a compiler used to produce
the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts
to control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for the
work, and the source code for shared libraries and dynamically linked
subprograms that the work is specifically designed to require, such as
by intimate data communication or control flow between those sub-
programs and other parts of the work.

The Corresponding Source need not include anything that users can re-
generate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same
work. 2. Basic Permissions.

All rights granted under this License are granted for the term of copy-
right on the Program, and are irrevocable provided the stated con-
ditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not con-
vey, without conditions so long as your license otherwise remains in
force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary. 3. Protecting Users’ Legal Rights From Anti-
Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circum-
vention is effected by exercising rights under this License with respect
to the covered work, and you disclaim any intention to limit opera-
tion or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention
of technological measures. 4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appro-
priately publish on each copy an appropriate copyright notice; keep in-
tact all notices stating that this License and any non-permissive terms
added in accord with section 7 apply to the code; keep intact all no-
tices of the absence of any warranty; and give all recipients a copy of
this License along with the Program.

You may charge any price or no price for each copy that you con-
vey, and you may offer support or warranty protection for a fee. 5.
Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications
to produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

* a) The work must carry prominent notices stating that you modified
it, and giving a relevant date. * b) The work must carry prominent
notices stating that it is released under this License and any conditions
added under section 7. This requirement modifies the requirement in
section 4 to “keep intact all notices”. * c) You must license the entire
work, as a whole, under this License to anyone who comes into pos-
session of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and
all its parts, regardless of how they are packaged. This License gives
no permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it. * d) If
the work has interactive user interfaces, each must display Appropriate
Legal Notices; however, if the Program has interactive interfaces that
do not display Appropriate Legal Notices, your work need not make
them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used
to limit the access or legal rights of the compilation’s users beyond
what the individual works permit. Inclusion of a covered work in an
aggregate does not cause this License to apply to the other parts of
the aggregate. 6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:

* a) Convey the object code in, or embodied in, a physical product (in-
cluding a physical distribution medium), accompanied by the Corre-
sponding Source fixed on a durable physical medium customarily used
for software interchange. * b) Convey the object code in, or embodied
in, a physical product (including a physical distribution medium), ac-
companied by a written offer, valid for at least three years and valid
for as long as you offer spare parts or customer support for that prod-
uct model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the product
that is covered by this License, on a durable physical medium cus-
tomarily used for software interchange, for a price no more than your
reasonable cost of physically performing this conveying of source, or
(2) access to copy the Corresponding Source from a network server at
no charge. * c) Convey individual copies of the object code with a
copy of the written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and only
if you received the object code with such an offer, in accord with sub-
section 6b. * d) Convey the object code by offering access from a
designated place (gratis or for a charge), and offer equivalent access to
the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corre-
sponding Source along with the object code. If the place to copy the
object code is a network server, the Corresponding Source may be on a

different server (operated by you or a third party) that supports equiv-
alent copying facilities, provided you maintain clear directions next to
the object code saying where to find the Corresponding Source. Re-
gardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy
these requirements. * e) Convey the object code using peer-to-peer
transmission, provided you inform other peers where the object code
and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be in-
cluded in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorpora-
tion into a dwelling. In determining whether a product is a consumer
product, doubtful cases shall be resolved in favor of coverage. For a
particular product received by a particular user, “normally used” refers
to a typical or common use of that class of product, regardless of the
status of the particular user or of the way in which the particular
user actually uses, or expects or is expected to use, the product. A
product is a consumer product regardless of whether the product has
substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, pro-
cedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product
from a modified version of its Corresponding Source. The information
must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a fixed
term (regardless of how the transaction is characterized), the Corre-
sponding Source conveyed under this section must be accompanied by
the Installation Information. But this requirement does not apply if
neither you nor any third party retains the ability to install modi-
fied object code on the User Product (for example, the work has been
installed in ROM).

The requirement to provide Installation Information does not include
a requirement to continue to provide support service, warranty, or up-
dates for a work that has been modified or installed by the recipient,
or for the User Product in which it has been modified or installed.
Access to a network may be denied when the modification itself ma-
terially and adversely affects the operation of the network or violates
the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information pro-
vided, in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying. 7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions. Ad-
ditional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that
they are valid under applicable law. If additional permissions apply
only to part of the Program, that part may be used separately under
those permissions, but the entire Program remains governed by this
License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part
of it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders
of that material) supplement the terms of this License with terms:

* a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or * b) Requiring preser-
vation of specified reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices displayed by works
containing it; or * c) Prohibiting misrepresentation of the origin of
that material, or requiring that modified versions of such material be
marked in reasonable ways as different from the original version; or *
d) Limiting the use for publicity purposes of names of licensors or au-
thors of the material; or * e) Declining to grant rights under trademark
law for use of some trade names, trademarks, or service marks; or *
f) Requiring indemnification of licensors and authors of that material
by anyone who conveys the material (or modified versions of it) with
contractual assumptions of liability to the recipient, for any liability
that these contractual assumptions directly impose on those licensors
and authors.

All other non-permissive additional terms are considered “further re-
strictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is gov-
erned by this License along with a term that is a further restriction,
you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you
may add to a covered work material governed by the terms of that li-
cense document, provided that the further restriction does not survive
such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the additional
terms that apply to those files, or a notice indicating where to find the
applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the above
requirements apply either way. 8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally, un-
less and until the copyright holder explicitly and finally terminates

your license, and (b) permanently, if the copyright holder fails to no-
tify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by
some reasonable means, this is the first time you have received notice
of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10. 9. Acceptance Not Required for Having
Copies.

You are not required to accept this License in order to receive or run
a copy of the Program. Ancillary propagation of a covered work oc-
curring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing
other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work,
you indicate your acceptance of this License to do so. 10. Automatic
Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically re-
ceives a license from the original licensors, to run, modify and prop-
agate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an or-
ganization, or substantially all assets of one, or subdividing an orga-
nization, or merging organizations. If propagation of a covered work
results from an entity transaction, each party to that transaction who
receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of
the work from the predecessor in interest, if the predecessor has it or
can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (in-
cluding a cross-claim or counterclaim in a lawsuit) alleging that any
patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it. 11. Patents.

A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned
or controlled by the contributor, whether already acquired or hereafter
acquired, that would be infringed by some manner, permitted by this
License, of making, using, or selling its contributor version, but do
not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this
definition, “control” includes the right to grant patent sublicenses in a
manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor’s essential patent claims, to make,
use, sell, offer for sale, import and otherwise run, modify and propa-
gate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a
patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To “grant” such a patent license
to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the patent
license for this particular work, or (3) arrange, in a manner consistent
with the requirements of this License, to extend the patent license to
downstream recipients. “Knowingly relying” means you have actual
knowledge that, but for the patent license, your conveying the cov-
ered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrange-
ment, you convey, or propagate by procuring conveyance of, a covered
work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify or convey a
specific copy of the covered work, then the patent license you grant is
automatically extended to all recipients of the covered work and works
based on it.

A patent license is “discriminatory” if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on the
non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are
a party to an arrangement with a third party that is in the business
of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and
under which the third party grants, to any of the parties who would
receive the covered work from you, a discriminatory patent license (a)
in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection
with specific products or compilations that contain the covered work,
unless you entered into that arrangement, or that patent license was
granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any
implied license or other defenses to infringement that may otherwise
be available to you under applicable patent law. 12. No Surrender of
Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot con-
vey a covered work so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a con-
sequence you may not convey it at all. For example, if you agree to
terms that obligate you to collect a royalty for further conveying from
those to whom you convey the Program, the only way you could satisfy

371

Licenses

both those terms and this License would be to refrain entirely from
conveying the Program. 13. Use with the GNU Affero General Public
License.

Notwithstanding any other provision of this License, you have permis-
sion to link or combine any covered work with a work licensed under
version 3 of the GNU Affero General Public License into a single com-
bined work, and to convey the resulting work. The terms of this Li-
cense will continue to apply to the part which is the covered work, but
the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such. 14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new ver-
sions of the GNU General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Pub-
lic License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or
of any later version published by the Free Software Foundation. If
the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free
Software Foundation.

If the Program specifies that a proxy can decide which future versions
of the GNU General Public License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to
choose that version for the Program.

Later license versions may give you additional or different permissions.
However, no additional obligations are imposed on any author or copy-
right holder as a result of your choosing to follow a later version. 15.
Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PRO-
GRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-
VICING, REPAIR OR CORRECTION. 16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPER-
ATEWITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above
cannot be given local legal effect according to their terms, reviewing
courts shall apply local law that most closely approximates an abso-
lute waiver of all civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy of the Program
in return for a fee.

END OF TERMS AND CONDITIONS How to Apply These Terms
to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively state the
exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper
mail.

If the program does terminal interaction, make it output a short notice
like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author> This program
comes with ABSOLUTELY NO WARRANTY; for details type ‘show
w’. This is free software, and you are welcome to redistribute it under
certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the
appropriate parts of the General Public License. Of course, your pro-
gram’s commands might be different; for a GUI interface, you would
use an “about box”.

You should also get your employer (if you work as a programmer) or
school, if any, to sign a “copyright disclaimer” for the program, if nec-
essary. For more information on this, and how to apply and follow the
GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the
GNU Lesser General Public License instead of this License. But first,
please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.

18.2 GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation,
Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed. 0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document ”free” in the sense of freedom: to as-
sure everyone the effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncommercially. Sec-
ondarily, this License preserves for the author and publisher a way to
get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free pro-
gram should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this Li-
cense principally for works whose purpose is instruction or reference.
1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can
be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The ”Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as ”you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A ”Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter sec-
tion of the Document that deals exclusively with the relationship of
the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connec-
tion with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections
then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable
copy, represented in a format whose specification is available to the
general public, that is suitable for revising the document straightfor-
wardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage sub-
sequent modification by readers is not Transparent. An image format
is not Transparent if used for any substantial amount of text. A copy
that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input for-
mat, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human
modification. Examples of transparent image formats include PNG,
XCF and JPG. Opaque formats include proprietary formats that can
be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF pro-
duced by some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats
which do not have any title page as such, ”Title Page” means the text
near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The ”publisher” means any person or entity that distributes copies of
the Document to the public.

A section ”Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses

following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as ”Acknowl-
edgements”, ”Dedications”, ”Endorsements”, or ”History”.) To ”Preserve
the Title” of such a section when you modify the Document means that
it remains a section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These War-
ranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other impli-
cation that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License. 2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copy-
ing of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies. 3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transpar-
ent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-
using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably pru-
dent steps, when you begin distribution of Opaque copies in quantity,
to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document. 4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document un-
der the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

* A. Use in the Title Page (and on the covers, if any) a title dis-
tinct from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if
the original publisher of that version gives permission. * B. List on
the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its
principal authors, if it has fewer than five), unless they release you
from this requirement. * C. State on the Title page the name of the
publisher of the Modified Version, as the publisher. * D. Preserve
all the copyright notices of the Document. * E. Add an appropriate
copyright notice for your modifications adjacent to the other copyright
notices. * F. Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified Version under
the terms of this License, in the form shown in the Addendum below.
* G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice. *
H. Include an unaltered copy of this License. * I. Preserve the section
Entitled ”History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Ver-
sion as given on the Title Page. If there is no section Entitled ”History”
in the Document, create one stating the title, year, authors, and pub-
lisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence. *
J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise the
network locations given in the Document for previous versions it was
based on. These may be placed in the ”History” section. You may omit
a network location for a work that was published at least four years
before the Document itself, or if the original publisher of the version it
refers to gives permission. * K. For any section Entitled ”Acknowledge-
ments” or ”Dedications”, Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the contributor ac-
knowledgements and/or dedications given therein. * L. Preserve all
the Invariant Sections of the Document, unaltered in their text and

in their titles. Section numbers or the equivalent are not considered
part of the section titles. * M. Delete any section Entitled ”Endorse-
ments”. Such a section may not be included in the Modified Version.
* N. Do not retitle any existing section to be Entitled ”Endorsements”
or to conflict in title with any Invariant Section. * O. Preserve any
Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appen-
dices that qualify as Secondary Sections and contain no material copied
from the Document, you may at your option designate some or all of
these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles
must be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it con-
tains nothing but endorsements of your Modified Version by various
parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text,
and a passage of up to 25 words as a Back-Cover Text, to the end
of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by
(or through arrangements made by) any one entity. If the Document
already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old
one.

The author(s) and publisher(s) of the Document do not by this Li-
cense give permission to use their names for publicity for or to as-
sert or imply endorsement of any Modified Version. 5. COMBINING
DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the In-
variant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original au-
thor or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History”
in the various original documents, forming one section Entitled ”His-
tory”; likewise combine any sections Entitled ”Acknowledgements”, and
any sections Entitled ”Dedications”. You must delete all sections En-
titled ”Endorsements”. 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other doc-
uments released under this License, and replace the individual copies
of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and dis-
tribute it individually under this License, provided you insert a copy
of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document. 7.
AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an ”aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to
the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the
entire aggregate, the Document’s Cover Texts may be placed on cov-
ers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.
8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invari-
ant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedi-
cations”, or ”History”, the requirement (section 4) to Preserve its Title

(section 1) will typically require changing the actual title. 9. TERMI-
NATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt oth-
erwise to copy, modify, sublicense, or distribute it is void, and will
automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally, un-
less and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to no-
tify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by
some reasonable means, this is the first time you have received notice
of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it. 10. FUTURE REVISIONS OF THIS
LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License ”or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published
(not as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this License
can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.
11. RELICENSING

”Massive Multiauthor Collaboration Site” (or ”MMC Site”) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A public
wiki that anybody can edit is an example of such a server. A ”Massive
Multiauthor Collaboration” (or ”MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

”CC-BY-SA” means the Creative Commons Attribution-Share Alike
3.0 license published by Creative Commons Corporation, a not-for-
profit corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license published
by that same organization.

”Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.

An MMC is ”eligible for relicensing” if it is licensed under this License,
and if all works that were first published under this License somewhere
other than this MMC, and subsequently incorporated in whole or in
part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in
the site under CC-BY-SA on the same site at any time before August
1, 2009, provided the MMC is eligible for relicensing. ADDENDUM:
How to use this License for your documents

To use this License in a document you have written, include a copy
of the License in the document and put the following copyright and
license notices just after the title page:

Copyright (C) YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.3 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license
is included in the section entitled ”GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover
Texts, replace the ”with … Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the sit-
uation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License, to per-
mit their use in free software.

372

GNU Lesser General Public License

18.3 GNU Lesser General Public License
GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public Li-
cense, supplemented by the additional permissions listed below. 0.
Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser
General Public License, and the “GNU GPL” refers to version 3 of the
GNU General Public License.

“The Library” refers to a covered work governed by this License, other
than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library. Defin-
ing a subclass of a class defined by the Library is deemed a mode of
using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the “Linked
Version”.

The “Minimal Corresponding Source” for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source
code for portions of the Combined Work that, considered in isolation,
are based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means
the object code and/or source code for the Application, including any
data and utility programs needed for reproducing the Combined Work
from the Application, but excluding the System Libraries of the Com-
bined Work. 1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL. 2. Conveying
Modified Versions.

If you modify a copy of the Library, and, in your modifications, a fa-
cility refers to a function or data to be supplied by an Application that
uses the facility (other than as an argument passed when the facility
is invoked), then you may convey a copy of the modified version:

* a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the function
or data, the facility still operates, and performs whatever part of its
purpose remains meaningful, or * b) under the GNU GPL, with none
of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated ma-
terial is not limited to numerical parameters, data structure layouts
and accessors, or small macros, inline functions and templates (ten or
fewer lines in length), you do both of the following:

* a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are covered by
this License. * b) Accompany the object code with a copy of the GNU
GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the portions
of the Library contained in the Combined Work and reverse engineer-
ing for debugging such modifications, if you also do each of the follow-
ing:

* a) Give prominent notice with each copy of the Combined Work
that the Library is used in it and that the Library and its use are
covered by this License. * b) Accompany the Combined Work with a
copy of the GNU GPL and this license document. * c) For a Com-
bined Work that displays copyright notices during execution, include
the copyright notice for the Library among these notices, as well as a
reference directing the user to the copies of the GNU GPL and this
license document. * d) Do one of the following: o 0) Convey the
Minimal Corresponding Source under the terms of this License, and
the Corresponding Application Code in a form suitable for, and under
terms that permit, the user to recombine or relink the Application
with a modified version of the Linked Version to produce a modified
Combined Work, in the manner specified by section 6 of the GNU
GPL for conveying Corresponding Source. o 1) Use a suitable shared
library mechanism for linking with the Library. A suitable mechanism
is one that (a) uses at run time a copy of the Library already present
on the user’s computer system, and (b) will operate properly with a
modified version of the Library that is interface-compatible with the
Linked Version. * e) Provide Installation Information, but only if you
would otherwise be required to provide such information under section
6 of the GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the Combined
Work produced by recombining or relinking the Application with a
modified version of the Linked Version. (If you use option 4d0, the
Installation Information must accompany the Minimal Corresponding
Source and Corresponding Application Code. If you use option 4d1,
you must provide the Installation Information in the manner specified
by section 6 of the GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library
side by side in a single library together with other library facilities that
are not Applications and are not covered by this License, and convey
such a combined library under terms of your choice, if you do both of
the following:

* a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library facilities,
conveyed under the terms of this License. * b) Give prominent no-
tice with the combined library that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined
form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new ver-
sions of the GNU Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
as you received it specifies that a certain numbered version of the GNU
Lesser General Public License “or any later version” applies to it, you
have the option of following the terms and conditions either of that
published version or of any later version published by the Free Software
Foundation. If the Library as you received it does not specify a version
number of the GNU Lesser General Public License, you may choose
any version of the GNU Lesser General Public License ever published
by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License
shall apply, that proxy’s public statement of acceptance of any ver-
sion is permanent authorization for you to choose that version for the
Library.

373

	1 Ada Style Guide/Print version
	1.1 Preface

	2 Introduction
	2.1 Introduction
	2.2 Organization of this Book
	2.3 How To Use This Book
	2.4 Typographic Conventions

	3 Source Code Presentation
	3.1 Introduction
	3.2 Code Formatting
	3.3 Summary

	4 Readability
	4.1 Introduction
	4.2 Spelling
	4.3 Naming Conventions
	4.4 Comments
	4.5 Using Types
	4.6 Summary

	5 Program Structure
	5.1 Introduction
	5.2 High-Level Structure
	5.3 Visibility
	5.4 Exceptions
	5.5 Summary

	6 Programming Practices
	6.1 Introduction
	6.2 Optional Parts of the Syntax
	6.3 Parameter Lists
	6.4 Types
	6.5 Data Structures
	6.6 Expressions
	6.7 Statements
	6.8 Visibility
	6.9 Using exceptions
	6.10 Erroneous execution and bounded errors
	6.11 Summary

	7 Concurrency
	7.1 Introduction
	7.2 Concurrency Options
	7.3 Communication
	7.4 Termination
	7.5 Summary

	8 Portability
	8.1 Introduction
	8.2 Fundamentals
	8.3 Numeric Types and Expressions
	8.4 Tasking
	8.5 Exceptions
	8.6 Representation Clauses And Implementation-Dependent Features
	8.7 Input/Output
	8.8 Summary

	9 Reusability
	9.1 Introduction
	9.2 Understanding and Clarity
	9.3 Robustness
	9.4 Adaptability
	9.5 Independence
	9.6 Summary

	10 Object-Oriented Features
	10.1 Introduction
	10.2 Object-Oriented Design
	10.3 Tagged Type Hierarchies
	10.4 Tagged Type Operations
	10.5 Managing Visibility
	10.6 Multiple Inheritance
	10.7 Summary

	11 Improving Performance
	11.1 Introduction
	11.2 Performance Issues
	11.3 Performance Measurement
	11.4 Program Structure
	11.5 Data Structures
	11.6 Algorithms
	11.7 Types
	11.8 Pragmas
	11.9 Summary

	12 Portable Dining Philosophers Example
	13 References
	14 Bibliography
	15 GNU Free Documentation License
	15.1 0. PREAMBLE
	15.2 1. APPLICABILITY AND DEFINITIONS
	15.3 2. VERBATIM COPYING
	15.4 3. COPYING IN QUANTITY
	15.5 4. MODIFICATIONS
	15.6 5. COMBINING DOCUMENTS
	15.7 6. COLLECTIONS OF DOCUMENTS
	15.8 7. AGGREGATION WITH INDEPENDENT WORKS
	15.9 8. TRANSLATION
	15.10 9. TERMINATION
	15.11 10. FUTURE REVISIONS OF THIS LICENSE
	15.12 11. RELICENSING

	16 How to use this License for your documents
	17 Contributors
	List of Figures
	18 Licenses
	18.1 GNU GENERAL PUBLIC LICENSE
	18.2 GNU Free Documentation License
	18.3 GNU Lesser General Public License

